Vehicle control systems such as ESC (electronic stability control), MDPS (motor-driven power steering), and ECS (electronically controlled suspension) improve vehicle stability, driver comfort, and safety. Vehicle control systems such as ACC (adaptive cruise control), LKA (lane-keeping assistance), and AEB (autonomous emergency braking) have also been actively studied in recent years as functions that assist drivers to a higher level. These DASs (driver assistance systems) are implemented using vehicle sensors that observe vehicle status and send signals to the ECU (electronic control unit). Therefore, the failure of each system sensor affects the function of the system, which not only causes discomfort to the driver but also increases the risk of accidents. In this paper, we propose a new method to detect and isolate faults in a vehicle control system. The proposed method calculates the constraints and residuals of 12 systems by applying the model-based fault diagnosis method to the sensor of the chassis system. To solve the inaccuracy in detecting and isolating sensor failure, we applied residual sensitivity to a threshold that determines whether faults occur. Moreover, we applied a sensitivity analysis to the parameters semi-correlation table to derive a fault isolation table. To validate the FDI (fault detection and isolation) algorithm developed in this study, fault signals were injected and verified in the HILS (hardware-in-the-loop simulation) environment using an RCP (rapid control prototyping) device.
This paper presents a systematic fault analysis and diagnosis method of a PEM fuel cell control system using a model-based approach. With a model-based approach, it is possible to analyze the causal relationship and effect of probable faults in the system, and to diagnose them under the assumption that the model and the process are similar. With a model-based approach, it is possible to analyze the causal relationship and effect of probable faults in the system and diagnose them under the assumption that the model and the process are similar. In this work, a model-based approach was adopted for fault analysis and diagnosis, and its methods are suggested. A PEM fuel cell is mathematically modelled, analyzed, and verified for the analysis and simulations. Relationships among variables are shown using an incidence matrix and with a Dulmage–Mendelsohn decomposition of the matrix. When it is difficult to detect faults due to a deficient degree of redundancy, a bi-partite graph is used to analyze the effect of faults and to assess the possibility of fault detection through the appropriate redundant sensor placement. Thereafter, residuals are obtained based on analytical redundancies of the system, and a fault signature matrix is subsequently constructed. A fault detection and isolation (FDI) algorithm is developed based on a fault signature matrix that describes the connection between faults and residuals. The simulation results demonstrate the validity and effectiveness of the proposed FDI algorithm for diagnosing faults. With the proposed FDI algorithm, eight faults could be diagnosed by FDI algorithm with given sensors in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.