The high performance and increased tumor-targeting accumulation of magnetic nanocrystals (MNCs) are the most important considerations in cancer targeted magnetic hyperthermia (TMH). To achieve these goals, our study was firstly done using well-established fluorescence/magnetic Mn-Zn ferrite MNCs (core size: 14 nm) as multi-modal imaging contrast agents and highly-efficient "heat generators", which were coated with a biocompatible PEG-phospholipid (DSPE-PEG2000) and further modified by a cyclic tripeptide of arginine-glycine-aspartic acid (RGD). By using a mouse model bearing breast carcinoma (4T1), we then systematically compared PEGylated MNCs (MNCs@PEG)- and RGD-PEGylated MNCs (MNCs@RGD)-mediated tumor targeting abilities by intravenous administration. The MNCs@PEG-based passive targeting could successfully accumulate at the tumor due to the enhanced permeability and retention (EPR) effects, but the non-targeted localization might make the MNCs@PEG "leaking" from larger pores of tumor fenestrated vascular networks. Our designed MNCs@RGD, simultaneously functionalized with PEG and RGD ligands, might promote a synergistic effect including efficient tumor vasculature active targeting and EPR-mediated passive targeting, improving total MNC concentration and retention time in tumor tissues. By combining fluorescence/magnetic resonance (MR)/thermal multi-modal imaging-guided diagnostics and continuous TMH treatment under an alternating current magnetic field (ACMF, 2.58 kA m(-1), 390 kHz), the tumor surface could be heated to approximately 43-44 °C based on the MNC-mediated repeated injections. Sufficient temperature elevation induced the apoptosis of tumor cells, and inhibited the tumor angiogenesis. Compared with MNCs@PEG, the active MNCs@RGD-based tumor targeting MR image was significantly more efficient due to both the higher and long-lasting tumor accumulation, but its antitumor efficacy was not obviously improved in the TMH treatments. To achieve a singularly promising tumor TMH therapy, a greatly increased MNC content in tumor was needed. This insight indicated that not only the tumor vasculature targeting, but also the active tumor cells targeting of MNCs should receive considerable attention in future clinical TMH therapy application.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), such as gefitinib, have been established as first-line treatments for non-small cell lung cancer (NSCLC) patients and have exhibited notable clinical efficacy. However, resistance to TKIs has become one of the major obstacles in improving the therapeutic efficacy of patients with NSCLC. This study aims to investigate the role of the long non-coding RNA (lncRNA) LINC01116 in gefitinib resistance of NSCLC and explore its underlying mechanism. In this study, we found that LINC01116 is upregulated in the gefitinib-resistant NSCLC cells and tissues. Loss- and gain-of-function assays uncovered that LINC01116 downregulation sensitized gefitinib resistance, whereas the overexpression of LINC01116 conferred PC9/R cells to gefitinib treatment. Moreover, LINC01116 silencing increased IFI44 expression. Overexpression of IFI44 reversed the resistance to gefitinib in PC9/R cells, and rescue experiments confirmed that LINC01116 affects the gefitinib resistance of PC9/R cells partly dependent on regulating IFI44 expression. Moreover, downregulation of LINC01116 increased the sensitivity of PC9/R cells to gefitinib in vivo. Our study demonstrates that LINC01116 plays a critical role in gefitinib resistance of NSCLC cells by affecting IFI44 expression, providing a novel therapeutic target to overcome TKI resistance in NSCLC.
It is well known that animals can use neural and sensory feedback via vision, tactile sensing, and echolocation to negotiate obstacles. Similarly, most robots use deliberate or reactive planning to avoid obstacles, which relies on prior knowledge or high-fidelity sensing of the environment. However, during dynamic locomotion in complex, novel, 3D terrains, such as a forest floor and building rubble, sensing and planning suffer bandwidth limitation and large noise and are sometimes even impossible. Here, we study rapid locomotion over a large gap-a simple, ubiquitous obstacle-to begin to discover the general principles of the dynamic traversal of large 3D obstacles. We challenged the discoid cockroach and an open-loop six-legged robot to traverse a large gap of varying length. Both the animal and the robot could dynamically traverse a gap as large as one body length by bridging the gap with its head, but traversal probability decreased with gap length. Based on these observations, we developed a template that accurately captured body dynamics and quantitatively predicted traversal performance. Our template revealed that a high approach speed, initial body pitch, and initial body pitch angular velocity facilitated dynamic traversal, and successfully predicted a new strategy for using body pitch control that increased the robot's maximal traversal gap length by 50%. Our study established the first template of dynamic locomotion beyond planar surfaces, and is an important step in expanding terradynamics into complex 3D terrains.
The molecular mechanisms that underpin invasive ductal breast cancer (IDC) invasion and metastasis are incompletely understood. The oncogene, mouse double minute 2 (MDM2), has been implicated in the pathogenesis of numerous cancers, where it stimulates the expression of matrix metalloproteinase 9 (MMP9), an important enzyme in the breakdown of the extracellular matrix. However, its role in breast cancer remains poorly understood. This study assessed the clinical significance of MDM2 expression in IDC and used in vitro expression assays to determine the molecular roles of MDM2. Immunohistochemical staining for MMP9 and MDM2 was performed using archived tumor blocks from 321 women who underwent surgical resection for IDC at the First Affiliated Hospital of Nanjing Medical University, China between January 2002 and December 2003. MCF-7 and MDA-MD-231 cell lines were transfected with siRNA targeted against MDM2, or MDM2 was overexpressed using transiently expressed vectors. The invasion, cell migration and proteolytic capabilities of cells that over- or underexpressed MDM2 was then assessed and compared against control cells, in addition to the consequent effects on MMP9 expression using RT-PCR. In vivo, 54.9% and 49.6% of samples were positive for MMP9 and MDM2 expression, respectively, and their expression was significantly correlated (r2 = 0.171, P = 0.012). Moreover, MDM2 expression was markedly correlated with disease-free survival (HR 2.56, 95% CI 1.02–6.40, P = 0.038). In vitro, MDM2 overexpression significantly enhanced cell invasion, migration and proteolysis compared with control cells, and the converse effects were observed after MDM2-siRNA treatment. MDM2 overexpression induced MMP9 expression in a dose-dependent manner. Taken together, these results suggest that high levels of MDM2 are associated with a poorer prognosis in IDC. This might result from increased tumor invasiveness due to enhanced MMP9 expression causing increased extracellular matrix breakdown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.