It is well known that animals can use neural and sensory feedback via vision, tactile sensing, and echolocation to negotiate obstacles. Similarly, most robots use deliberate or reactive planning to avoid obstacles, which relies on prior knowledge or high-fidelity sensing of the environment. However, during dynamic locomotion in complex, novel, 3D terrains, such as a forest floor and building rubble, sensing and planning suffer bandwidth limitation and large noise and are sometimes even impossible. Here, we study rapid locomotion over a large gap-a simple, ubiquitous obstacle-to begin to discover the general principles of the dynamic traversal of large 3D obstacles. We challenged the discoid cockroach and an open-loop six-legged robot to traverse a large gap of varying length. Both the animal and the robot could dynamically traverse a gap as large as one body length by bridging the gap with its head, but traversal probability decreased with gap length. Based on these observations, we developed a template that accurately captured body dynamics and quantitatively predicted traversal performance. Our template revealed that a high approach speed, initial body pitch, and initial body pitch angular velocity facilitated dynamic traversal, and successfully predicted a new strategy for using body pitch control that increased the robot's maximal traversal gap length by 50%. Our study established the first template of dynamic locomotion beyond planar surfaces, and is an important step in expanding terradynamics into complex 3D terrains.
Robots still struggle to dynamically traverse complex 3D terrain with many large obstacles, an ability required for many critical applications. Body–obstacle interaction is often inevitable and induces perturbation and uncertainty in motion that challenges closed-form dynamic modeling. Here, inspired by recent discovery of a terradynamic streamlined shape, we studied how two body shapes interacting with obstacles affect turning and pitching motions of an open-loop multi-legged robot and cockroaches during dynamic locomotion. With a common cuboidal body, the robot was attracted towards obstacles, resulting in pitching up and flipping-over. By contrast, with an elliptical body, the robot was repelled by obstacles and readily traversed. The animal displayed qualitatively similar turning and pitching motions induced by these two body shapes. However, unlike the cuboidal robot, the cuboidal animal was capable of escaping obstacle attraction and subsequent high pitching and flipping over, which inspired us to develop an empirical pitch-and-turn strategy for cuboidal robots. Considering the similarity of our self-propelled body–obstacle interaction with part–feeder interaction in robotic part manipulation, we developed a quasi-static potential energy landscape model to explain the dependence of dynamic locomotion on body shape. Our experimental and modeling results also demonstrated that obstacle attraction or repulsion is an inherent property of locomotor body shape and insensitive to obstacle geometry and size. Our study expands the concept and usefulness of terradynamic shapes for passive control of robot locomotion to traverse large obstacles using physical interaction. Our study is also a step in establishing an energy landscape approach to locomotor transitions.
To traverse complex three-dimensional terrain with large obstacles, animals and robots must transition across different modes. However, the most mechanistic understanding of terrestrial locomotion concerns how to generate and stabilize near-steady-state, single-mode locomotion (e.g. walk, run). We know little about how to use physical interaction to make robust locomotor transitions. Here, we review our progress towards filling this gap by discovering terradynamic principles of multi-legged locomotor transitions, using simplified model systems representing distinct challenges in complex three-dimensional terrain. Remarkably, general physical principles emerge across diverse model systems, by modelling locomotor–terrain interaction using a potential energy landscape approach. The animal and robots' stereotyped locomotor modes are constrained by physical interaction. Locomotor transitions are stochastic, destabilizing, barrier-crossing transitions on the landscape. They can be induced by feed-forward self-propulsion and are facilitated by feedback-controlled active adjustment. General physical principles and strategies from our systematic studies already advanced robot performance in simple model systems. Efforts remain to better understand the intelligence aspect of locomotor transitions and how to compose larger-scale potential energy landscapes of complex three-dimensional terrains from simple landscapes of abstracted challenges. This will elucidate how the neuromechanical control system mediates physical interaction to generate multi-pathway locomotor transitions and lead to advancements in biology, physics, robotics and dynamical systems theory.
Terrestrial animals must self-right when overturned on the ground. To do so, the discoid cockroach often pushes its wings against the ground to begin a somersault but rarely succeeds in completing it. As it repeatedly attempts this, it probabilistically rolls to the side to self-right. Here, we studied whether seemingly wasteful leg flailing in this process helps. Adding mass to increase hind leg flailing kinetic energy fluctuation increased the animal's self-righting probability. We then developed a robot with similar, strenuous self-righting behavior and used it as a physical model for systematic experiments. As legs flailed more vigorously and wings opened more, self-righting became more probable. A potential energy landscape model revealed that, although wing opening did not generate sufficient kinetic energy to overcome the high pitch potential energy barrier, it reduced barriers for rolling, facilitating the small kinetic energy fluctuation from leg flailing to probabilistically overcome roll barriers to self-right.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.