SUMMARY Mammals have evolved neurophysiologic reflexes such as coughing and scratching to expel invading pathogens and noxious environmental stimuli. It is well established that these responses are also associated with chronic inflammatory diseases such as asthma and atopic dermatitis. However, the mechanisms by which inflammatory pathways promote sensations such as itch remain poorly understood. Here, we show that type 2 cytokines directly activate sensory neurons in both mice and humans. Further, we demonstrate that chronic itch is dependent on neuronal IL-4Rα and JAK1 signaling. We also observe that patients with recalcitrant chronic itch that failed other immunosuppressive therapies markedly improve when treated with JAK inhibitors. Thus, signaling mechanisms previously ascribed to the immune system may represent novel therapeutic targets within the nervous system. Collectively, this study reveals an evolutionarily conserved paradigm in which the sensory nervous system employs classical immune signaling pathways to influence mammalian behavior.
SUMMARY Coding of itch versus pain has been heatedly debated for decades. However, the current coding theories (labeled line, intensity and selectivity theory) cannot accommodate all experimental observations. Here we identified a subset of spinal interneurons, labeled by gastrin releasing peptide (Grp), that receive direct synaptic input from both pain and itch primary sensory neurons. When activated, these Grp+ neurons generated rarely-seen simultaneous robust pain and itch responses that were intensity-dependent. Accordingly, we propose a “leaky gate” model, in which Grp+ neurons transmit both itch and weak pain signals, however upon strong painful stimuli the recruitment of endogenous opioids works to close this gate, reducing overwhelming pain generated by parallel pathways. Consistent with our model, loss of these Grp+ neurons increased pain responses while itch was decreased. Our new model serves as an example of non-monotonic coding in the spinal cord and better explains observations in human psychophysical studies.
Chemotherapy is one of the three most common treatment modalities for cancer. However, its efficacy is limited by multidrug resistant cancer cells. Drug metabolizing enzymes (DMEs) and efflux transporters promote the metabolism, elimination, and detoxification of chemotherapeutic agents. Consequently, elevated levels of DMEs and efflux transporters reduce the therapeutic effectiveness of chemotheraputics and, often, lead to treatment failure. Nuclear receptors, especially pregnane X receptor (PXR, NR1I2) and constitutive androstane activated receptor (CAR, NR1I3), are increasingly recognized for their role in xenobiotic metabolism and clearance as well as their role in the development of multidrug resistance (MDR) during chemotherapy. Promiscuous xenobiotic receptors, including PXR and CAR, govern the inducible expressions of a broad spectrum of target genes that encode phase I DMEs, phase II DMEs, and efflux transporters. Recent studies conducted by a number of groups, including ours, have revealed that PXR and CAR play pivotal roles in the development of MDR in various human carcinomas, including prostate, colon, ovarian, and esophageal squamous cell carcinomas. Accordingly, PXR/CAR expression levels and/or activation statuses may predict prognosis and identify the risk of drug resistance in patients subjected to chemotherapy. Further, PXR/CAR antagonists, when used in combination with existing chemotherapeutics that activate PXR/CAR, are feasible and promising options that could be utilized to overcome or, at least, attenuate MDR in cancer cells.
As a protective mechanism, the cornea is sensitive to noxious stimuli. Here, we show that in mice, a high proportion of corneal TRPM8+ cold-sensing fibers express the heat-sensitive TRPV1 channel. Despite its insensitivity to cold, TRPV1 enhances membrane potential changes and electrical firing of TRPM8+ neurons in response to cold stimulation. This elevated neuronal excitability leads to augmented ocular cold nociception in mice. In a model of dry eye disease, the expression of TRPV1 in TRPM8+ cold-sensing fibers is increased, and results in severe cold allodynia. Overexpression of TRPV1 in TRPM8+ sensory neurons leads to cold allodynia in both corneal and non-corneal tissues without affecting their thermal sensitivity. TRPV1-dependent neuronal sensitization facilitates the release of the neuropeptide substance P from TRPM8+ cold-sensing neurons to signal nociception in response to cold. Our study identifies a mechanism underlying corneal cold nociception and suggests a potential target for the treatment of ocular pain.
Fatty acids are involved in multiple pathways and play a pivotal role in health. Eicosanoids, derived from arachidonic acid, have received extensive attention in the field of cancer research. Following release from the phospholipid membrane, arachidonic acid can be metabolized into different classes of eicosanoids through cyclooxygenases, lipoxygenases, or p450 epoxygenase pathways. Non-steroid anti-inflammatory drugs (NSAIDs) are widely consumed as analgesics to relieve minor aches and pains, as antipyretics to reduce fever, and as anti-inflammatory medications. Most NSAIDs are nonselective inhibitors of cyclooxygenases, the rate limiting enzymes in the formation of prostaglandins. Long term use of some NSAIDs has been linked with reduced incidence and mortality in many cancers. In this review, we appraise the biological activities of prostanoids and their cognate receptors in the context of cancer biology. The existing literature supports that these lipid mediators are involved to a great extent in the occurrence and progression of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.