Objectives: To estimate the prevalence, management, and outcomes of pediatric severe sepsis in the main PICUs in Southwest China. Design: A prospective, observational, and multicenter study. Setting: Eight PICUs in Southwest China with 19 (13–24) beds and 1,322 (1,066–1,452) annual admissions each. Patients: A total of 10,598 patients (29 d to 18 yr old) were consecutively admitted between September 1, 2016, and August 31, 2017. All patients were screened and evaluated for severe sepsis or septic shock. Of them, 10,353 patients were excluded due to incomplete data or not meeting the consensus criteria for severe sepsis or septic shock; 245 patients were included with complete data. Interventions: None. Measurements and Main Results: Finally, 245 patients who were diagnosed with severe sepsis or septic shock were included in the study, with an incidence rate of 2.3%. Of them, 64.0% of the enrolled patients were male with 80.8% being less than 5 years old and 60.8% being from rural areas. The respiratory system was the most common organ system in which dysfunction was observed (76.7%) as well as the most frequently infected site (37.6%). The primary therapies were antibiotics (99.0%), immunoglobulin (88.3%), mechanical ventilation (78.4%), vasoactive infusions (59.6%), and corticosteroids (46.1%). Among the 188 patients who had respiratory dysfunction, 173(92%) required mechanical ventilation and 39 (20.7%) met the criteria for pediatric acute respiratory distress syndrome. Seven of the patients with pediatric acute respiratory distress syndrome died (7/39, 17.9%). The median durations for mechanical ventilation and vasoactive medications were 123.5 hours (35.25–226.00 hr) and 2 days (1–5 d), respectively. Eighty-six percent of patients had multiple organ dysfunction syndrome at the point at which severe sepsis was recognized, and 31% had underlying conditions. The hospital mortality rate was 18.8%. Conclusions: This report is the first to present the prevalence, treatment, and outcomes of pediatric severe sepsis in the main PICU centers in Southwest China. The mortality rate remains high; therefore, improved clinical management and implementation of large-scale clinical trials are necessary to improve early diagnoses and treatment.
Objective To investigate lncRNAs and their roles in regulating the pulmonary inflammatory response under dexamethasone (Dex) treatment. Methods IL-1β (10 ng/mL) and LPS (1 μg/mL) was used to construct inflammatory cell models with A549 cells; IL-1β performed better against LPS. Different concentrations of Dex were used to attenuate the inflammation induced by IL-1β, and its effect was assessed via RT-PCR to detect inflammatory cytokine-related mRNA levels, including those of IKβ-α, IKKβ, IL-6, IL-8, and TNF-α. Furthermore, ELISA was used to detect the levels of the inflammatory cytokines TNF-α, IL-6, and IL-8. RT-PCR was used to quantify the levels of lncRNAs, including lncMALAT1, lncHotair, lncH19, and lncNeat1. LncH19 was most closely associated with the inflammatory response, which was induced by IL-1β and attenuated by Dex. Among the lncRNAs, the level of lncH19 showed the highest increase following treatment with 1 and 10 μM Dex. Therefore, lncH19 was selected for further functional studies. LncH19 expression was inhibited by shRNA transduced with lentivirus. Cell assays for cell proliferation and apoptosis as well as RT-PCR, western blot, and ELISA for inflammatory genes were conducted to confirm the functions of lncH19. The predicted target miRNAs of lncH19 were hsa-miR-346, hsa-miR-324-3p, hsa-miR-18a-3p, hsa-miR-18b-5p, hsa-miR-146b-3p, hsa-miR-19b-3p, and hsa-miR-19a-3p. Following estimation via RT-PCR, hsa-miR-346, hsa-miR-18a-3p, and hsa-miR-324-3p showed consistent patterns in A549 NC and A549 shlncH19. An miRNA inhibitor was transfected into A549 NC and A549 shlncH19 cells, and the expression levels were determined via RT-PCR. hsa-miR-324-3p was inhibited the most compared with hsa-miR-346 and hsa-miR-18a-3p and was subjected to further functional studies. RT-PCR, ELISA, and western blotting for inflammatory gene detection were conducted to validate the functions of the target hsa-miR-324-3p. Results Treatment with 1 and 10 μM Dex could effectively attenuate the inflammatory response. During this process, lncH19 expression significantly increased (P < 0.05). Therefore, treatment with 1 μM Dex was used for further study. Under IL-1β treatment with or without Dex, lncH19 inhibition led to an increase in cell proliferation; a decrease in cell apoptosis; an increase in the protein levels of inflammatory genes; phosphorylation of P65, ICAM-1, and VCAM-1; and increase inflammatory cytokines. Prediction of the targets of lncH19 and validation via RT-PCR revealed that miR-346, miR-18a-3p, and miR-324-3p negatively correlate with lncH19. Additionally, Dex increased the lncH19 expression but reduced that of the miRNAs. Among the miRNAs, miR-324-3p was the most markedly downregulated miRNA following treatment of miRNA inhibitors. The MTS assay and cell apoptosis assay showed that the miR-324-3p inhibitor inhibited cell proliferation and induced cell apoptosis, thereby significantly attenuating the inflammatory response, which reversed the effect of lncH19 in regulating cell proliferation and the secretion of inflammatory cytokines (P < 0.05). Therefore, lncH19 might regulate miR-324-3p in pulmonary inflammatory response under Dex treatment. Conclusion Dex can attenuate the pulmonary inflammatory response by regulating the lncH19/miR-324-3p cascade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.