At present, the packing method of “plastic bag–buffer packing–packing paper box” is adopted for bearing packaging. However, the common packing method has a poor packing effect and poor versatility. In this study, a new biomimetic cobweb cushion is proposed to solve the problem of insufficient cushioning capacity of high-precision bearing cushion packaging pads. First, according to the nature of cobweb form, the cobweb cushion structure configuration is determined. Next, based on the structure of the cushion and the relationship between the parameters of radial thread and spiral thread, a mechanical and target optimization model is established. The stress nephogram of bearing and the cobweb cushion are analyzed under three drop heights of 381, 610, and 700 mm, in the finite element simulation software to ensure that the maximum bearings stress is not beyond the material yield strength. Via the 3D printing technology, a cobweb cushion shell cast is made. Drop tests of the bearing were performed, and the results were verified with the finite element simulation analysis. This research can provide technical support for the protection of high-precision bearings from accidental drops during transportation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.