Highlights d High-alcohol-producing strains of Klebsiella pneumoniae exist in humans d HiAlc Kpn is associated with NAFLD in a human cohort d Transplant of HiAlc Kpn into mice causes NAFLD d Feeding mice glucose led to detectable blood alcohol, suggesting a biomarker for NAFLD
In the originally published version of this article, the ultra-high blood alcohol concentration was mistakenly given as 400 mg/L instead of 400 mg/dL. The correction has now been made online. This error does not affect the conclusions of the paper. The authors apologize for any confusion that this error may have caused.
Scope: High-salt diets (HSDs) are widely considered to cause health problems such as gut microecological imbalances, constipation, and hypertension. This study explores how lactulose as a safe molecule can stimulate bodily responses to alleviate salt-sensitive hypertension by regulating the gut microbiotas of HSD-fed mice. Methods and results: After 4 weeks, the blood pressures of mice fed a high-salt plus lactulose diet (HSLD) are significantly lower than those of the HSD-fed mice. The HSD increases the abundances of Alistipes and Ruminococcaceae UCG 009 and reduced the abundance of Lactobacillus in the gut, while lactulose supplementation increases the abundances of Bifidobacterium, Alloprevotella, and Subdoligranulum. Fecal metabolic profiling shows significant increases in metabolites involved in ATP-binding cassette transporter pathways, and tryptophan metabolism is significantly reduced in the HSLD group compared with the HSD group. Lactulose maintains the intestinal microenvironmental health in the HSD-fed mice by improving glycolipid metabolism, decreasing the small intestinal interleukin-17a (IL-17a) and interleukin-22 (IL-22) mRNA levels and serum IL-17a and IL-22 levels, relieving constipation, increasing fecal sodium, and reducing intestinal permeability. Conclusion: Lactulose negates salt-sensitive hypertension. Regulating the gut microbiota is a potential treatment for salt-sensitive hypertension.
Carbapenem-resistant Enterobacter aerogenes strains are a major clinical problem because of the lack of effective alternative antibiotics. However, viruses that lyze bacteria, called bacteriophages, have potential therapeutic applications in the control of antibiotic-resistant bacteria. In the present study, a lytic bacteriophage specific for E. aerogenes isolates, designated vB_EaeM_φEap-3, was characterized. Based on transmission electron microscopy analysis, phage vB_EaeM_φEap-3 was classified as a member of the family Myoviridae (order, Caudovirales). Host range determination revealed that vB_EaeM_φEap-3 lyzed 18 of the 28 E. aerogenes strains tested, while a one-step growth curve showed a short latent period and a moderate burst size. The stability of vB_EaeM_φEap-3 at various temperatures and pH levels was also examined. Genomic sequencing and bioinformatics analysis revealed that vB_EaeM_φEap-3 has a 175,814-bp double-stranded DNA genome that does not contain any genes considered undesirable for the development of therapeutics (e.g., antibiotic resistance genes, toxin-encoding genes, integrase). The phage genome contained 278 putative protein-coding genes and one tRNA gene, tRNA-Met (AUG). Phylogenetic analysis based on large terminase subunit and major capsid protein sequences suggested that vB_EaeM_φEap-3 belongs to novel genus “Kp15 virus” within the T4-like virus subfamily. Based on host range, genomic, and physiological parameters, we propose that phage vB_EaeM_φEap-3 is a suitable candidate for phage therapy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.