Recent studies designed to assess the relationship between aortic compliance and heterogeneity of heart electrical activity has shown that hypertrophy aggravates repolarization disturbances in the myocardium. Numerous mechanisms of electrical instability and inhomogeneity associated with left ventricular hypertrophy are now under investigation. Most of the studies have been found to be focused on ventricular Gradient, QT dispersion, amplitudes of isointegral maps during ventricular repolarization, abnormally low-QRST areas, dispersion of the QT interval, and spatial QRS-T(angle). These studies point to marked repolarization abnormalities in left ventricular hypertrophy and the dispersion of the QT interval as a valuable index for inhomogeneity of repolarization and the subsequent heart rate variability. The heart rate-corrected QT dispersion and QT apex dispersion seem to be significantly longer in the patients with left ventricular hypertrophy than in normal individuals. The review study has also identified QRST isointegral map as a valuable technique in assessment of the electro-cardiac events in LVH.
Spinal cord injury (SCI) causes a significant physical, emotional, social, and economic burden to millions of people. MicroRNAs are known players in the regulatory circuitry of the neural repair in SCI. However, most microRNAs remain uncharacterized. Here, we demonstrate the neuroprotection of microRNA-145 (miR-145) after SCI in vivo and in vitro. In silico analysis predicted the target gene KDM6A of miR-145. The rat SCI model was developed by weight drop, and lipopolysaccharide- (LPS-) induced PC12 cell inflammatory injury model was also established. We manipulated the expression of miR-145 and/or KDM6A both in vivo and in vitro to explain their roles in rat neurological functional recovery as well as PC12 cell activities and inflammation. Furthermore, we delineated the mechanistic involvement of NOTCH2 and Abcb1a in the neuroprotection of miR-145. According to the results, miR-145 was poorly expressed and KDM6A was highly expressed in the spinal cord tissue of the SCI rat model and LPS-induced PC12 cells. Overexpression of miR-145 protects PC12 cells from LPS-induced cell damage and expedites neurological functional recovery of SCI in rats. miR-145 was validated to target and downregulate the demethylase KDM6A expression, thus abrogating the expression of Abcb1a by promoting the methylation of NOTCH2. Additionally, in vivo findings verified that miR-145 expedites neuroprotection after SCI by regulating the KDM6A/NOTCH2/Abcb1a axis. Taken together, miR-145 confers neuroprotective effects and enhances neural repair after SCI through the KDM6A-mediated NOTCH2/Abcb1a axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.