Phage therapy is a promising solution for bacterial infections that are not eradicated by conventional antibiotics. A crucial element of this approach is appropriate matching of bacteriophages and antibiotics to the bacterial target according to the clinical setting. However, there is currently little consistency in the protocols used for the laboratory evaluation of bacteriophages intended for antibacterial treatment. In this Personal View, we suggest a framework aimed to match appropriate bacteriophage-based treatments in clinical microbiology laboratories. This framework, which we have termed Clinical Phage Microbiology, is based on the current research on phage treatments. In addition, we discuss special cases that might require additional relevant evaluation, including bacteriophage interactions with the host immune response, biofilm-associated infections, and polymicrobial infections. The Clinical Phage Microbiology pipeline could serve as the basis for future standardisation of laboratory protocols for personalised phage therapy.
A key element in phage therapy is the establishment of large phage collections, termed herein “banks”, where many well-characterized phages, ready to be used in the clinic, are stored. These phage banks serve for both research and clinical purposes. Phage banks are also a key element in clinical phage microbiology, the prior treatment matching of phages and antibiotics to specific bacterial targets. A worldwide network of phage banks can promote a phage-based solution for any isolated bacteria. Herein, we describe the Israeli Phage Bank (IPB) established in the Hebrew University, Jerusalem, which currently has over 300 phages matching 16 bacteria, mainly pathogens. The phage bank is constantly isolating new phages and developing methods for phage isolation and characterization. The information on the phages and bacteria stored in the bank is available online.
Antibiotic-resistant Cutibacterium acnes has been reported worldwide, but data from Israeli patients with acne is currently lacking. This study evaluated the antibiotic susceptibility of C. acnes , isolated from 50 Israeli patients with acne to commonly prescribed antibiotics, using the Epsilometer test (E-test). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis, 16S rRNA sequencing and single locus sequence typing (SLST) molecular typing were used to identify and characterize C. acnes . Among 36 strains isolated, phylotype IA 1 was most common. Resistance to at least one antibiotic was found in 30.6% of tested strains. Resistance rates were highest for erythromycin (25.0%), followed by doxycycline (19.4%), clindamycin (16.7%), minocycline (11.1%) and tetracycline (8.3%). Significant correlation was found between resistance to multiple antibiotics, with 5.6% of isolates resistant to all antibiotics tested. When reviewing resistances rate worldwide antibiotic resistance was found to be prevalent in Israel. Measures to limit the emergence of antibiotic-resistant strains of Cutibacterium acnes should be taken and alternative treatments should be sought.
Providencia spp. are emerging pathogens mainly in nosocomial infections. Providencia stuartii in particular is involved in urinary tract infections and contributes significantly to the high incidence of biofilm-formation in catheterized patients. Furthermore, recent reports suggested a role for multiple drug resistant (MDR) P. stuartii in hospital-associated outbreaks which leads to excessive complications resulting in challenging treatments. Phage therapy is currently one of the most promising solutions to combat antibiotic-resistant infections. However, the number of available phages targeting Providencia spp. is extremely limited, restricting the use of phage therapy in such cases. In the present study, we describe the isolation and characterization of 17 lytic and temperate bacteriophages targeting clinical isolates of Providencia spp. as part of the Israeli Phage Bank (IPB). These phages, isolated from sewage samples, were evaluated for host range activity and effectively eradicated 95% of the tested bacterial strains isolated from different geographic locations and displaying a wide range of antibiotic resistance. Their lytic activity is demonstrated on agar plates, planktonic cultures, and biofilm formed in a catheter model. The results suggest that these bacteriophages can potentially be used for treatment of antibiotic-resistant Providencia spp. infections in general and of urinary tract infections in particular.
Acne vulgaris is a common neutrophil-driven inflammatory skin disorder in which Cutibacterium acnes (C. acnes) is known to play a key role. For decades, antibiotics have been widely employed to treat acne vulgaris, inevitably resulting in increased bacterial antibiotic resistance. Phage therapy is a promising strategy to combat the growing challenge of antibiotic-resistant bacteria, utilizing viruses that specifically lyse bacteria. Herein, we explore the feasibility of phage therapy against C. acnes. Eight novel phages, isolated in our laboratory, and commonly used antibiotics eradicate 100% of clinically isolated C. acnes strains. Topical phage therapy in a C. acnes-induced acne-like lesions mouse model affords significantly superior clinical and histological scores. Moreover, the decrease in inflammatory response was reflected by the reduced expression of chemokine CXCL2, neutrophil infiltration, and other inflammatory cytokines when compared with the infected-untreated group. Overall, these findings indicate the potential of phage therapy for acne vulgaris as an additional tool to conventional antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.