Microalgae biomass has been recently used as an inexpensive substrate for the industrial production of polyhydroxyalkanoates (PHAs). In this work, a dilute acid pretreatment using 0.3 N of hydrochloric acid (HCl) was performed to extract reducing sugars from 10% (w/v) of defatted Chlorella biomass (DCB). The resulting HCl DCB hydrolysate was used as a renewable substrate to assess the ability of three bacterial strains, namely Bacillus megaterium ALA2, Cupriavidus necator KCTC 2649, and Haloferax mediterranei DSM 1411, to produce PHA in shake flasks. The results show that under 20 g/L of DCB hydrolysate derived sugar supplementation, the cultivated strains successfully accumulated PHA up to 29.7–75.4% of their dry cell weight (DCW). Among the cultivated strains, C. necator KCTC 2649 exhibited the highest PHA production (7.51 ± 0.20 g/L, 75.4% of DCW) followed by H. mediterranei DSM 1411 and B. megaterium ALA2, for which a PHA content of 3.79 ± 0.03 g/L (55.5% of DCW) and 0.84 ± 0.06 g/L (29.7% of DCW) was recorded, respectively. Along with PHA, a maximum carotenoid content of 1.80 ± 0.16 mg/L was produced by H. mediterranei DSM 1411 at 120 h of cultivation in shake flasks. PHA and carotenoid production increased by 1.45- and 1.37-fold, respectively, when HCl DCB hydrolysate biotransformation was upscaled to a 1 L of working volume fermenter. Based on FTIR and 1H NMR analysis, PHA polymers accumulated by B. megaterium ALA2 and C. necator KCTC 2649 were identified as homopolymers of poly(3-hydroxybutyrate). However, a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 3-hydroxyvalerate fraction of 10.5 mol% was accumulated by H. mediterranei DSM 1411.
Biodegradable polyurethanes (PUs) were produced from castor oil (CO) and poly (3-hydroxybutyrate) diol (PHBD) using hexamethylene diisocyanate as a crosslinking agent. PHBDs of different molecular weights were synthesized through transesterification of bacterial PHB and ethylene glycol by changing the reaction time. The synthesized PHBDs were characterized in terms of Fourier transform infrared and proton nuclear magnetic resonance spectroscopy. A series of PUs at different NCO/OH and CO/PHBD ratios were prepared. The resulting CO/PHBD-based PUs were then characterized in terms of mechanical and thermal properties. Increasing PHBD content significantly increased the tensile strength of CO/PHBD-based PUs by 300% compared to neat CO-based PU. CO/PHBD-based PUs synthetized from short chain PHBD exhibited higher tensile strength compared to those produced from long chain PHBD. As revealed by scanning electron microscopy analysis, such improvement in stiffness of the resulting PUs is due to the good compatibility between CO and PHBD. Increasing PHBD content also increased the crystallinity of the resulting PUs. In addition, higher degradation rates were obtained for CO/PHBD-based PUs synthetized from long chain PHBD compared to neat CO PU and PUs produced from short chain PHBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.