The objective of this study was to determine the effect of perilla cake (PC) supplementation in a growing pig diet on overall growing performance, meat quality, and fatty acid profile. A total of 24 barrow grower crossbred pigs (Large White × Landrace) × Duroc with an initial average body weight of 26.33 kg were fed with a basal diet supplemented with PC at 0%, 5%, and 10% in (PC0, PC5, and PC10, respectively) for 12 weeks. At the end of the experimental period, pigs were slaughtered to determine carcass traits and meat quality. Back fat, abdominal fat, and longissimus dorsi (LD) muscle were collected to investigate fatty acid composition. The results show that the average daily gain (ADG) in the PC10 significantly increased. However, PC supplementation did not influence carcass traits and meat quality except the color as described by lightness (L*). Dietary PC supplementation significantly increased the α-linolenic acid (ALA, C18:3 cis-9, 12, 15), whereas n6/n3 ratio decreased significantly in all tissues investigated. Thus, it can be concluded that the supplementation of PC in growing pig diet is a potential way to increase the fatty acid composition to that required for healthier meat.
This study determined the nutritional values of ground perilla cake (GPC) and the potential for dietary supplementation in growing pigs based on in vitro ileal digestibility (IVID) and apparent total tract digestibility (ATTD). The IVID evaluated at four dietary supplementation levels: 0, 5, 10, and 20%. The ATTD was measured by using twenty-four grower crossbred pigs. Pigs were randomly assigned to three dietary supplementation levels (0, 5, and 10%). From these analytical results, GPC raw material contained crude protein (CP) content (31.54%). That total essential amino acid (EAA) was 138.34 mg/g, mainly leucine (28.87 mg/g), and contained notably limiting amino acids for pigs, such as lysine (19.52 mg/g) and methionine (10.94 mg/g). The ether extract content (EE) was 10.52%, and the major free fatty acid (FFA) was linolenic acid (C18:3n3; 55.97%) and the fat-soluble vitamins included γ-tocopherol (367.25 μg/100g). In addition, GPC contained minerals such as phosphorus (1.02%), potassium (0.83%), calcium (0.46%), and iron. However, crude fiber (CF) had a notably high content (24.43%). Increasing GPC levels in pig diets reduced the IVID of dry matter (DM), EE, and CF (P<0.05), especially the 20% GPC supplement. The IVID of the CP did not differ among the groups. Furthermore, the results for the ATTD of the CP and EE in the 5% GPC supplement group were significantly better than that of the other groups (P˂0.05). We found the potential of GPC as an alternative protein source. Moreover, it contained high energy and polyunsaturated fatty acid.
Banana stem is a common feed component for raising pigs in mountainous Southeast Asia. However, its nutritive value and digestibility are low. This study was carried out to investigate the effects of unfermented and fermented banana stems on crossbred pigs concerning nutrient digestibility, productive performance, and intestinal morphology. Initially, an in vitro ileal digestibility test was performed for the following feedstuffs: fresh banana stem (BS), fermented banana stem (FBS), concentrate (C), fresh banana stem + concentrate (BSC), and fermented banana stem + concentrate (FBSC). For the 120-day experiment, 16 crossbred pigs were divided into two groups and fed with BSC and FBSC. They were placed in individual cages and subsequently moved to metabolic cages for seven days to determine apparent total tract digestibility (ATTD). Finally, all pigs were slaughtered and their small intestines were analyzed for intestinal morphology. The results show that pure fresh and fermented banana stems had low digestibility. However, their digestibility increased by 50% when mixed with concentrate. Crossbred pigs fed BSC and FBSC did not exhibit significant differences in their performance, but the intestinal morphology of the FBSC group had improved intestinal morphology, especially the villi height. In conclusion, both fresh and fermented banana stems can be recommended in a low protein diet as feed for crossbred pigs in an improved production system. This is relevant for raising pigs in mountainous areas, as it has the potential to reduce feed cost and maintain production performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.