This paper introduces JAWS, a JavaScript framework for adaptive work sharing between CPU and GPU for data-parallel workloads. Unlike conventional heterogeneous parallel programming environments for JavaScript, which use only one compute device when executing a single kernel, JAWS accelerates kernel execution by exploiting both devices to realize full performance potential of heterogeneous multicores. JAWS employs an efficient work partitioning algorithm that finds an optimal work distribution between the two devices without requiring offline profiling. The JAWS runtime provides shared arrays for multiple parallel contexts, hence eliminating extra copy overhead for input and output data. Our preliminary evaluation with both CPU-friendly and GPU-friendly benchmarks demonstrates that JAWS provides good load balancing and efficient data communication between parallel contexts, to significantly outperform best single-device execution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.