We developed a superhydrophobic surface using surface texturing with nano-sized structure and polytetrafluoroethylene (PTFE) film deposition. The properties of superhydrophobic surface were investigated using water contact angle, root mean square (RMS) roughness, and X-ray photoelectron spectroscopy (XPS). The contact angle of a water droplet was greater than 150°, which means extremely low wettability is achievable on superhydrophobic surfaces. For nano-sized structure, we carried out two step etching process using reactive ion etching (RIE) in a large pyramid substrate by potassium hydroxide (KOH) solution. Metal mesh installed RIE etched silicon substrate using SF 6 and O 2 gas. PTFE films were deposited by conventional RF magnetron sputtering. This process is applicable for stable superhydrophobic and selfcleaning surfaces due to hierarchical structures formed silicon wafer etched by RIE technique.
We have developed nanosized structures on a silicon surface by the reactive ion etching method. The purpose of this work is to fabricate pyramid-nanocolumn structures for crystalline silicon solar cells using a reactive ion etching (RIE) system with a metal mesh and to simulate surface texturing structures using the PC1D program. The reflectance of the structures was lower than that of only-pyramid or only-nanocolumn structure arrays. We formed micropyramids by general anisotropic saw damage removal (SDR) etching using potassium hydroxide (KOH) solution, as well as nanocolumn structures by RIE with a metal mesh and SF6/O2 gas (35/30 sccm). We studied the fundamentals and morphologies of structures (micropyramids, nanocolumn structures, and pyramid-nanocolumn structures). Owing to anisotropic SDR etching in KOH solution for a single-crystalline silicon wafer, the whole wafer surface is covered with pyramid structures with a size range of 1–5 µm. After RIE texturing, nanocolumn structures with a size range of 20–50 nm were formed on the pyramid structures. Owing to binary surface texturing with pyramid and nanocolumn structures, spectra with weighted average reflectances below 3% in the wavelength range from 350 to 1100 nm were obtained under optimized condition. In particular, the average reflectance was 1.16% in the wavelength range of 400 to 1000 nm without an antireflection coating (ARC). The combination of the pyramid and nanostructures has a very low reflectance. Therefore, ARC is not required in the solar cell process in the case of using pyramid-nanocolumn structures.
We have found optimized RIE conditions by increasing the distance between the metal mesh and silicon wafer. We have also found that by increasing the reactive ion etching (RIE) process time with an optimized SF 6 /O 2 ratio, pressure, and RF power. It is possible to switch from a random texture to an nm-size pyramid texture on μm-size pyramid texture. This RIE system textured a crystalline wafer surface that formed approximately 10~20 nm structures on 2~3 μm pyramidal silicon with less than 3% of reflectivity.
In this paper we evaluate the Reticle Defect Review feature on KLA-Tencor's e-beam review tool, eDR™-7110, and study defect printability of reticle defects on wafer. The RDR feature is able to read KLA-Tencor's reticle inspection results directly without any intermediate format, thus allowing what-you-see-is-what-you-get setup on the wafer review tool. Compared with a conventional reticle to wafer approach using KLA Results Files, Reticle Defect Review provides faster time to results, more accurate defect disposition and increased ease of use, which have been demonstrated by the printability study of reticle defects on a focus exposure matrix wafer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.