Preventing the occurrence of cardiovascular disease (CVD) with nutritional interventions is a therapeutic strategy that may warrant greater research attention. The increased use of omega (ω)-3 fatty acids is a powerful example of one such nutritional strategy that may produce significant cardiovascular benefits. Marine food products have provided the traditional dietary sources of ω-3 fatty acids. Flaxseed is an alternative to marine products. It is one of the richest sources of the plant-based ω-3 fatty acid, alpha-linolenic acid (ALA). Based on the results of clinical trials, epidemiological investigations and experimental studies, ingestion of ALA has been suggested to have a positive impact on CVD. Because of its high ALA content, the use of flaxseed has been advocated to combat CVD. The purpose of the present review was to identify the known cardiovascular effects of flaxseed and ALA and, just as importantly, what is presently unknown.
Functional foods and nutraceuticals are becoming popular alternatives to pharmacological treatments by providing health benefits and (or) reducing the risk of chronic diseases. Flaxseed is a rich source of 3 components with demonstrated cardioprotective effects: the omega-3 fatty acid alpha-linolenic acid (ALA), dietary fibre, and phytoestrogen lignans. Multiple clinical dietary intervention trials report that consuming flaxseed daily can modestly reduce circulating total cholesterol (TC) by 6%-11% and low-density lipoprotein (LDL) cholesterol by 9%-18% in normolipemic humans and by 5%-17% for TC and 4%-10% for LDL cholesterol in hypercholesterolemic patients, as well as lower various markers associated with atherosclerotic cardiovascular disease in humans. Evidence to date suggests that the dietary fibre and (or) lignan content of flaxseed provides the hypocholesterolemic action. The omega-3 ALA found in the flaxseed oil fraction also contributes to the antiatherogenic effects of flaxseed via anti-inflammatory and antiproliferative mechanisms. Dietary flaxseed may also protect against ischemic heart disease by improving vascular relaxation responses and by inhibiting the incidence of ventricular fibrillation.
Epidemiological evidence has associated dietary trans fatty acids (TFA) with heart disease. TFA are primarily from hydrogenated fats rich in elaidic acid, but dairy products also contain naturally occurring TFA such as vaccenic acid. Our purpose in this study was to compare the effects of consuming a commercially hydrogenated vegetable shortening rich in elaidic TFA (18:1t9) or a butter rich in vaccenic TFA (18:1t11) in the absence and presence of dietary cholesterol on atherosclerosis. LDL receptor deficient (LDLr(-/-)) mice were fed 1 of 8 experimental diets for 14 wk with the fat content replaced by: regular (pork/soy) fat (RG), elaidic shortening (ES), regular butter (RB), vaccenic butter (VB), or an atherogenic diet containing 2% cholesterol with RG (CH+RG), ES (CH+ES), RB (CH+RB), or VB (CH+VB). Serum cholesterol levels were elevated with cholesterol feeding (P < 0.001), whereas serum triglyceride levels were higher only in the CH+RB (P < 0.001) and CH+VB (P < 0.001) groups compared with the other 6 groups. Serum cholesterol and triglyceride levels were significantly lower in the CH+VB group than in the CH+RB group (P< 0.001). Atherosclerosis was stimulated by dietary ES compared with RG (P = 0.021), but CH+ES did not stimulate atherosclerosis beyond CH+RG alone. In contrast, VB did not induce an increase in atherosclerotic plaque formation compared with the RG and RB diets and the CH+VB diet reduced atherosclerosis compared with the other diets containing cholesterol (P < 0.01). In summary, consuming a hydrogenated elaidic acid-rich diet stimulates atherosclerosis, whereas a vaccenic acid-rich butter protects against atherosclerosis in this animal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.