A precise oxygen method was used to measure primary production, community respiration and to determine the importance of exogenous organic carbon as an energy source to planktonic communities in the epilimnion of 12 oligotrophic to mesotrophic Shield lakes. Median photosynthetic parameters observed with the oxygen method were up to twice as high as those measured with 14 C in other oligotrophic Shield lakes. Gross photosynthesis was almost always larger than community respiration, with a median P : R ratio of 1.7. We observed strong relationships between respiration and gross photosynthesis, but could not detect any significant trend between respiration or the P : R ratio and the concentration of dissolved organic carbon (DOC). DOC appeared to depress both photosynthesis and respiration. These results argue against the importance of exogenous organic carbon supply as a significant energy source to freshwater planktonic communities. Previously low P : R ratios reported for oligotrophic fresh waters may be due to the uncertain meaning of 14 C production data.The balance between production and respiration lies at the basis of our understanding of carbon flow and food web structure in marine and freshwater ecosystems. Ecosystems where photosynthesis exceeds total planktonic respiration (P Ͼ R) are net autotrophic; they are net sinks for CO 2 and net producers of O 2 and organic matter. Conversely, ecosystems where respiration exceeds photosynthesis (P Ͻ R) are net heterotrophic; they are net sources of CO 2 and net consumers of organic carbon.The relative importance of primary production and community respiration in oligotrophic waters and the role of exogenous organic carbon as an energy source to planktonic communities are the subject of an ongoing debate in oceanography and limnology. Most ecologists have considered lakes and oceans as net autotrophic systems fueled primarily by planktonic photosynthesis. Our understanding of carbon flow and of the production-respiration balance in oligotrophic aquatic ecosystems is still limited, however. Several studies have suggested that respiration systematically exceeds photosynthesis in the epilimnion of oligotrophic lakes, estuaries, and oceans (Sorokin 1971;Findlay et al.
In aquatic systems, biological invasions can result in adverse ecological effects. Management techniques available for non-native fish removal programs (including eradication and population size control) vary widely, but include chemicals, harvest regimes, physical removal, or biological control. For management agencies, deciding on what non-native fish removal program to use has been challenging because there is little reliable information about the relative effectiveness of these measures in controlling or eradicating non-native fish. We conducted a systematic review, including a critical appraisal of study validity, to assess the effectiveness of different non-native fish removal methods and to identify the factors that influence the overall success rate of each type of method. We found 95 relevant studies, generating 158 data sets. The evidence base was dominated by poorly documented studies with inadequate experimental designs (76% of removal projects). When the management goal was non-native fish eradication, chemical treatments were relatively successful (antimycin 89%; rotenone 75%) compared with other interventions. Electrofishing and passive removal measure studies indicated successful eradication was possible (58% each) but required intensive effort and multiple treatments over a number of years. Of these studies with sufficient information, electrofishing had the highest success for population size control (56% of data sets). Overall, inadequate data quality and completeness severely limited our ability to make strong conclusions about the relationships between non-native fish abundance and different methods of eradication and population control and the factors influencing the overall success rate of each method. Our review highlights that there is considerable scope for improving our evaluations of non-native fish removal methods. It is recommended that programs should have explicitly stated objectives, better data reporting, and study designs that (when possible and appropriate) incorporate replicated and controlled investigations with rigorous, long-term quantitative monitoring. Future research on the effectiveness of non-native fish removal methods should focus on: (i) the efficacy of existing or potentially new removal measures in larger, more complex environments; (ii) a broader range of removal measures in general; and (iii) phenotypic characteristics of individual fish within a population that fail to be eradicated or controlled.
Inputs of nutrients (P and N) to freshwaters can cause excessive aquatic plant growth, depletion of oxygen, and deleterious changes in diversity of aquatic fauna. As part of a "National Agri-Environmental Standards Initiative," the Government of Canada committed to developing environmental thresholds for nutrients to protect ecological condition of agricultural streams. Analysis of data from >200 long-term monitoring stations across Canada and detailed ecological study at ~70 sites showed that agricultural land cover was associated with increased nutrient concentrations in streams and this, in turn, was associated with increased sestonic and benthic algal abundance, loss of sensitive benthic macroinvertebrate taxa, and an increase in benthic diatom taxa indicative of eutrophication. Chemical thresholds for N and P were defined by applying five approaches, employing either a predetermined percentile to a water chemistry data set or a relationship between water chemistry and land cover, to identify boundaries between minimally disturbed and impaired conditions. Comparison of these chemical thresholds with biological thresholds (derived from stressor-response relationships) produced an approach for rationalizing these two types of thresholds and deriving nutrient criteria. The resulting criteria were 0.01 to 0.03 mg L(-1) total P and 0.87-1.2 mg L(-1) total N for the Atlantic Maritime, 0.02 mg L(-1) total P and 0.21 mg L(-1) total N for the Montane Cordillera, ~0.03 mg L(-1) total P and ~1.1 mg L(-1) total N for the Mixedwood Plains, and ~0.10 mg L(-1) total P and 0.39-0.98 mg L(-1) total N for the interior prairies of Canada. Adoption of these criteria should result in greater likelihood of good ecological condition with respect to benthic algal abundance, diatom composition, and macroinvertebrate composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.