Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with
Neocortical layer 6 plays a crucial role in sensorimotor co-ordination and integration through functionally segregated circuits linking intracortical and subcortical areas. We performed whole-cell recordings combined with morphological reconstructions to identify morpho-electric types of layer 6A pyramidal cells (PCs) in rat barrel cortex. Cortico-thalamic (CT), cortico-cortical (CC), and cortico-claustral (CCla) PCs were classified based on their distinct morphologies and have been shown to exhibit different electrophysiological properties. We demonstrate that these three types of layer 6A PCs innervate neighboring excitatory neurons with distinct synaptic properties: CT PCs establish weak facilitating synapses onto other L6A PCs; CC PCs form synapses of moderate efficacy, while synapses made by putative CCla PCs display the highest release probability and a marked short-term depression. For excitatory-inhibitory synaptic connections in layer 6, both the presynaptic PC type and the postsynaptic interneuron type govern the dynamic properties of the respective synaptic connections. We have identified a functional division of local layer 6A excitatory microcircuits which may be responsible for the differential temporal engagement of layer 6 feed-forward and feedback networks. Our results provide a basis for further investigations on the long-range CC, CT, and CCla pathways.
GABAergic interneurons in different cortical areas play important roles in diverse higher-order cognitive functions. The heterogeneity of interneurons is well characterized in different sensory cortices, in particular in primary somatosensory and visual cortex. However, the structural and functional properties of the medial prefrontal cortex (mPFC) interneurons have received less attention. In this study, a cluster analysis based on axonal projection patterns revealed four distinct clusters of L6 interneurons in rat mPFC: Cluster 1 interneurons showed axonal projections similar to Martinotti-like cells extending to layer 1, cluster 2 displayed translaminar projections mostly to layer 5, and cluster 3 interneuron axons were confined to the layer 6, whereas those of cluster 4 interneurons extend also into the white matter. Correlations were found between neuron location and axonal distribution in all clusters. Moreover, all cluster 1 L6 interneurons showed a monotonically adapting firing pattern with an initial high-frequency burst. All cluster 2 interneurons were fast-spiking, while neurons in cluster 3 and 4 showed heterogeneous firing patterns. Our data suggest that L6 interneurons that have distinct morphological and physiological characteristics are likely to innervate different targets in mPFC and thus play differential roles in the L6 microcircuitry and in mPFC-associated functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.