A reliable and high-efficiency system of transforming embryogenic callus (EC) mediated by Agrobacterium tumefaciens was developed in cotton. Various aspects of transformation were examined in efforts to improve the efficiency of producing transformants. LBA4404 and C58C3, harboring the pDgusBin19 plasmid containing neomycin phosphortransferase II (npt-II) gene as a selection marker, were used for transformation. The effects of Agrobacterium strains, acetosyringone (AS), co-cultivation temperature, co-cultivation duration, Agrobacterium concentration and physiological status of EC on transformation efficiency were evaluated. Strain LBA4404 proved significantly better than C58C3. Agrobacterium at a concentration of 0.5 · 10 8 cells ml )1 (OD 600 ¼ 0.5) improved the efficiency of transformation. Relatively low co-cultivation temperature (19°C) and short co-cultivation duration (48 h) were optimal for developing a highly efficient method of transforming EC. Concentration of AS at 50 mg l )1 during co-cultivation significantly increased transformation efficiency. EC growing 15 days after subculture was the best physiological status for transformation. An overall scheme for producing transgenic cotton is presented, through which an average transformation rate of 15% was obtained.Abbreviations: AS -acetosyringone; EC -embryogenic callus; IBA -indole-3-butyric acid; MS -Murashige and Skoog (1962) medium; MSB -MS basal salts plus B 5 (Gamborg et al., 1968) vitamins; NAAa-naphthaleneacetic acid; npt-II -neomycin phosphortransferase II
Calli were successfully induced from hypocotyls of eight wild diploid cotton species (Gossypium) on MSB (MS salts and B(5) vitamins) medium supplemented with 0.09 microM 2,4-D (2,4-dichlorophenoxyacetic acid) and 2.32 microM KT (kinetin). Plant growth regulator (PGR) combinations, adding GA(3) (Gibberellic acid), high inorganic salt stress, and PGR-free media were used to induce embryogenic calli from nonembryogenic calli. Embryogenic cultures were induced from G. aridum S. (D(4) genome), G. davidsonii K. (D(3)-d genome), G. klotzschianum A. (D(3)-k genome), G. raimondii U. (D(5) genome), and G. stocksii M. (E(1) genome). We then observed somatic embryogenesis in the five species while calli of G. africanum V. (A(1)-2 genome), G. anomalum W. (B(1) genome), and G. bickii P. (G genome) remained nonembryogenic. Somatic embryogenesis was adjusted by changing sugar sources, regulating combinations of PGRs, and using cell suspension culture. Embryos at various developmental stages produced mature and germinating embryos when cultured on filter paper placed on the media containing different sugar sources. The utility of different sugar sources promoted globular embryos developing into cotyledonary stage and increased the frequency of cotyledonary embryos developing into normal plants. Normal plantlets were regenerated from G. davidsonii, G. klotzschianum, G. raimondii, and G. stocksii. Only abnormal plantlets were obtained in G. aridum. This work will contribute to broadening the number of regenerable cotton species and provide foundations for somatic hybridization in cotton to create new germplasm.
Background The development and utilization of genetic markers play a pivotal role in marker-assisted breeding of rice cultivars during pyramiding of valuable genes. Among molecular markers, SNPs have become the most promising due to their wide distribution within genomes and suitability for high -throughput automated genotyping. Although metadata of SNPs have been identified via next generation sequencing in rice, a large gap between the development of SNP markers and the application in breeding still exists. To promote the application of SNP markers based on the KASP (Kompetitive Allele-Specific PCR) method in rice breeding, a set of core SNP arrays was built via the screening of SNP databases and literature resources based on the KASP method. Results Five hundred and ninety six SNPs classified into eight subsets including quality control, indica-indica variation, highly polymorphic, functional genes, key genes targeting sites, gene cloned region, important trait associated and gap filling sites were chosen to design KASP primers and 565 out of them were successfully designed, and the assay design success rate was 94.8%. Finally, 467 out of the 565 successfully-designed SNPs can display diversity at the loci were used to develop a set of core SNP arrays. To evaluate the application value of the core SNP markers in rice breeding, 481 rice germplasms were genotyped with three functional KASP markers designed from the sequences of GBSSI , SSIIa , and Badh2 from the core SNP arrays for estimation of their grain quality performance. Eighteen rice lines, including Xiangwanxian 13, Basmati 370, Ruanhua A, and PR 33319–9–1-1-5-3-5-4-1, harbor all three favorable alleles. The core KASP arrays were also used for rice germplasm assessment, genetic diversity and population evaluation. Four hundred and eighty-one rice germplasms were divided into 3 groups: POP1, POP2 and POP3. POP1 and POP2 were indica rice subgroups consisting of 263 and 186 rice germplasms, respectively. POP3 was a japonica rice subgroup consisting of 32 rice germplasms. The average F ST value for the three subgroups was 0.3501; the F ST value of POP1 and POP3 was the largest (0.5482), while that of POP1 and POP2 was the smallest (0.0721). The results showed that the genetic distance between the japonica and indica rice subspecies was large, indicating that the core SNP markers were effective at discriminating the population structure of the germplasms. Finally, the core KASP arrays were used for association analysis with milled grain traits. A total of 31 KASP markers were significantly associated ( P < 0.01) with ML and the LWR. Among the 31 markers, 13 were developed based on cloned genes or on identified loci related to yield traits. Notably, several KASP markers associated with grain quality were also found...
Background Angiogenesis is crucial for many pathological processes and becomes a therapeutic strategy against diseases ranging from inflammation to cancer. The regulatory mechanism of angiogenesis remains unclear. Although tetraspanin CD82 is widely expressed in various endothelial cells (ECs), its vascular function is unknown. Methods and Results Angiogenesis was examined in Cd82-null mice with in vivo and ex vivo morphogenesis assays. Cellular functions, molecular interactions, and signaling were analyzed in Cd82-null ECs. Angiogenic responses to various stimuli became markedly increased upon Cd82 ablation. Major changes of Cd82-null ECs were enhanced migration and invasion, likely resulting from the upregulated expression of cell adhesion molecules (CAMs) such as CD44 and integrins at the cell surface and subsequently elevated outside-in signaling. Gangliosides, lipid raft clustering, and CD44-membrane microdomain interactions were increased in the plasma membrane of Cd82-null ECs, leading to less clathrin-independent endocytosis and then more surface presence of CD44. Conclusions Our study reveals that CD82 restrains pathological angiogenesis by inhibiting EC movement, lipid raft clustering and CAM trafficking modulate angiogenic potential, and the perturbation of CD82-ganglioside-CD44 signaling attenuates angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.