Estrogens have been classified as group 1 carcinogens by the World Health Organization and represent a significant concern given that they are found in surface waters worldwide, and long-term exposure to estrogen-contaminated water can disrupt sexual development in animals. To date, the estrogen catabolic enzymes and genes remain unknown. Using a tiered functional genomics approach, we identified three estrogen catabolic gene clusters in Sphingomonas sp. strain KC8. We identified several estrone-derived compounds, including 4-hydroxyestrone, a meta-cleavage product, and pyridinestrone acid. The yeast-based estrogen assay suggested that pyridinestrone acid exhibits negligible estrogenic activity. We characterized 17β-estradiol dehydrogenase and 4-hydroxyestrone 4,5-dioxygenase, responsible for the 17-dehydrogenation and meta-cleavage of the estrogen A ring, respectively. The characteristic pyridinestrone acid was detected in estrone-spiked samples collected from two wastewater treatment plants and two suburban rivers in Taiwan. The results significantly expand our understanding of microbial degradation of aromatic steroids at molecular level.
BackgroundEndolithic microbes in coral skeletons are known to be a nutrient source for the coral host. In addition to aerobic endolithic algae and Cyanobacteria, which are usually described in the various corals and form a green layer beneath coral tissues, the anaerobic photoautotrophic green sulfur bacteria (GSB) Prosthecochloris is dominant in the skeleton of Isopora palifera. However, due to inherent challenges in studying anaerobic microbes in coral skeleton, the reason for its niche preference and function are largely unknown.ResultsThis study characterized a diverse and dynamic community of endolithic microbes shaped by the availability of light and oxygen. In addition, anaerobic bacteria isolated from the coral skeleton were cultured for the first time to experimentally clarify the role of these GSB. This characterization includes GSB’s abundance, genetic and genomic profiles, organelle structure, and specific metabolic functions and activity. Our results explain the advantages endolithic GSB receive from living in coral skeletons, the potential metabolic role of a clade of coral-associated Prosthecochloris (CAP) in the skeleton, and the nitrogen fixation ability of CAP.ConclusionWe suggest that the endolithic microbial community in coral skeletons is diverse and dynamic and that light and oxygen are two crucial factors for shaping it. This study is the first to demonstrate the ability of nitrogen uptake by specific coral-associated endolithic bacteria and shed light on the role of endolithic bacteria in coral skeletons.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0616-z) contains supplementary material, which is available to authorized users.
Application of matrix-assisted laser desorption/ionization imaging mass spectrometry to microbiology and natural product research has opened the door to the exploration of microbial interactions and the consequent discovery of new natural products and their functions in the interactions. However, several drawbacks of matrix-assisted laser desorption/ionization imaging mass spectrometry have limited its application especially to complicated and uneven microbial samples. Here, we applied nanostructured silicon as a substrate for surface-assisted laser desorption/ionization mass spectrometry for microbial imaging mass spectrometry to explore fungal metabolic interactions. We chose Phellinus noxius and Aspergillus strains to evaluate the potential of microbial imaging mass spectrometry on nanostructured silicon because both fungi produce a dense mass of aerial mycelia, which is known to complicate the collection of high-quality imaging mass spectrometry data. Our simple and straightforward sample imprinting method and low background interference resulted in an efficient analysis of small metabolites from the complex microbial interaction samples.
Numerous studies have reported the masculinization of freshwater wildlife exposed to androgens in polluted rivers. Microbial degradation is a crucial mechanism for eliminating steroid hormones from contaminated ecosystems. The aerobic degradation of testosterone was observed in various bacterial isolates. However, the ecophysiological relevance of androgen-degrading microorganisms in the environment is unclear. Here, we investigated the biochemical mechanisms and corresponding microorganisms of androgen degradation in aerobic sewage. Sewage samples collected from the Dihua Sewage Treatment Plant (Taipei, Taiwan) were aerobically incubated with testosterone (1 mM). Androgen metabolite analysis revealed that bacteria adopt the 9, 10-seco pathway to degrade testosterone. A metagenomic analysis indicated the apparent enrichment of Comamonas spp. (mainly C. testosteroni) and Pseudomonas spp. in sewage incubated with testosterone. We used the degenerate primers derived from the meta-cleavage dioxygenase gene (tesB) of various proteobacteria to track this essential catabolic gene in the sewage. The amplified sequences showed the highest similarity (87–96%) to tesB of C. testosteroni. Using quantitative PCR, we detected a remarkable increase of the 16S rRNA and catabolic genes of C. testosteroni in the testosterone-treated sewage. Together, our data suggest that C. testosteroni, the model microorganism for aerobic testosterone degradation, plays a role in androgen biodegradation in aerobic sewage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.