To better understand the molecular basis of chronic obstructive pulmonary disease (COPD), we used serial analysis of gene expression (SAGE) and microarray analysis to compare the gene expression patterns of lung tissues from COPD and control smokers. A total of 59,343 tags corresponding to 26,502 transcripts were sequenced in SAGE analyses. A total of 327 genes were differentially expressed (1.5-fold up-or down-regulated). Microarray analysis using the same RNA source detected 261 transcripts that were differentially expressed to a significant degree between GOLD-2 and GOLD-0 smokers. We confirmed the altered expression of a select number of genes by using real-time quantitative RT-PCR. These genes encode for transcription factors (EGR1 and FOS), growth factors or related proteins (CTGF, CYR61, CX3CL1, TGFB1, and PDGFRA), and extracellular matrix protein (COL1A1). Immunofluorescence studies on the same lung specimens localized the expression of Egr-1, CTGF, and Cyr61 to alveolar epithelial cells, airway epithelial cells, and stromal and inflammatory cells of GOLD-2 smokers. Cigarette smoke extract induced Egr-1 protein expression and increased Egr-1 DNA-binding activity in human lung fibroblast cells. Cytomix (tumor necrosis factor ␣, IL-1, and IFN-␥) treatment showed that the activity of matrix metalloproteinase-2 (MMP-2) was increased in lung fibroblasts from EGR1 control (؉/؉) mice but not detected in that of EGR1 null (؊/؊) mice, whereas MMP-9 was regulated by EGR1 in a reverse manner. Our study represents the first comprehensive analysis of gene expression on GOLD-2 versus GOLD-0 smokers and reveals previously unreported candidate genes that may serve as potential molecular targets in COPD.
SUMMARY Genomic sequencing has driven precision-based oncology therapy; however, genetic drivers remain unknown or non-targetable for many malignancies, demanding alternative approaches to identify therapeutic leads. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated based on anatomical location – supratentorial region (ST) or posterior fossa (PF) – and further divided into distinct molecular subgroups that reflect differences in age of onset, gender predominance, and response to therapy1–3. The most common and aggressive subgroup, Posterior Fossa Ependymoma Group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations2. Conversely, Posterior Fossa Ependymoma Group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses yet favourable clinical outcomes1,3. Greater than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NFκB subunit RELA (ST-EPN-RELA), and less frequently involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1).1,3,4 Subependymomas, a distinct histologic variant, can also be found within the ST and PF compartments accounting for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE, respectively1. Here, we mapped active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts with the goal of identifying essential super enhancer associated genes on which tumour cells were dependent. Enhancer regions revealed putative oncogenes, molecular targets, and pathways, which when subjected to small molecule inhibitor or shRNA treatment, diminished proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers recalcitrant to therapeutic development because of their lack of known genetic drivers.
As a class of key building blocks in the chemical industry, aromatic compounds are mainly derived from the catalytic reforming of petroleum-based long chain hydrocarbons. The dehydroaromatization of methane can also be achieved by using zeolitic catalysts under relatively high temperature. Herein we demonstrate that Si-doped GaN nanowires (NWs) with a 97% rationally constructed m-plane can directly convert methane into benzene and molecular hydrogen under ultraviolet (UV) illumination at rt. Mechanistic studies suggest that the exposed m-plane of GaN exhibited particularly high activity toward methane C-H bond activation and the quantum efficiency increased linearly as a function of light intensity. The incorporation of a Si-donor or Mg-acceptor dopants into GaN also has a large influence on the photocatalytic performance.
We describe a simple, metal-and oxidantfree photochemical strategy for the direct trifluoromethylation of unactivated arenes and heteroarenes under either ultraviolet or visible light irradiation. We demonstrated that photoexcited aliphatic ketones, such as acetone and diacetyl, can be used as promising low-cost radical initiators to generate CF 3 radicals from sodium triflinate efficiently. The broad utility of this strategy and its benefit to medicinal chemistry are demonstrated by the direct trifluoromethylation of unprotected bidentate chelating ligand, xanthine alkaloids, nucleosides, and related antiviral drug molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.