Annexins (ANXs) are a large group of calcium-binding proteins participating in diverse important biological processes. ANXA10 is the least expressed new member of unknown function. We showed that ANXA10 mRNA was expressed in adult liver and hepatocellular carcinoma (HCC), but not in multiple adult and fetal tissues, cholangiocarcinoma, and several other common carcinomas. Of 182 unifocal primary HCCs, ANXA10 mRNA was dramatically reduced in 121 (66%), and the down-regulation correlated with p53 mutation (P ؍ 0.024), early intrahepatic tumor recurrence (P ؍ 0.0007), and lower 4-year survival (P ؍ 0.0014). Down-regulation of ANXA10 was twofold more frequent in large than small HCCs (P ؍ 0.0012), in grade II to III than grade I HCC (P < 0.00001), and in stage IIIA to IV than stage I to II HCC (P < 0.00001). Moreover, ANXA10 down-regulation and p53 mutation acted synergistically toward high-grade (P < 0.00001), high-stage HCC (P < 0.00001), and poorer prognosis (P ؍ 0.0025). Our results indicate that the expression of the tissue-and tumor-restricted ANXA10 is a marker of liver cell differentiation and growth arrest, and its down-regulation associated with malignant phenotype of hepatocytes, vascular invasion, and progression of HCC, leading to poor prognosis. Thus, ANXA10 might serve as a new potential target of gene therapy for HCC.
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor worldwide; however, the traditional therapeutic approaches and survival rates are still limited. To improve current therapies, it is necessary to investigate the molecular mechanisms underlying liver cancer and to identify potential therapeutic targets. The aims of this study were to verify the mechanisms and therapeutic potential of the ketogenesis rate-limiting enzyme 3-Hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) in HCC. Immunohistochemical staining of human liver disease tissue arrays showed that HMGCS2 is abundantly expressed in normal liver tissues but is downregulated in cirrhosis and HCC tissues. In HCC patients, lower HMGCS2 expression was correlated with higher pathological grades and clinical stages. In our investigation of the molecular mechanisms of HMGCS2 in HCC, we showed that knockdown of HMGCS2 decreased ketone production, which promoted cell proliferation, cell migration, and xenograft tumorigenesis by enhancing c-Myc/cyclinD1 and EMT signaling and by suppressing the caspase-dependent apoptosis pathway. Ketone body treatment reduced the proliferation- and migration-promoting effects of HMGCS2 knockdown in cells. In contrast, HMGCS2 overexpression increased the intracellular ketone level and inhibited cell proliferation, cell migration, and xenograft tumorigenesis. Finally, ketogenic diet administration significantly inhibited liver cancer cell growth in mice. Our studies highlight the potential therapeutic strategy of targeting HMGCS2-mediated ketogenesis in liver cancer.
Generation of transgene-specific immune responses can constitute a major complication following gene therapy treatment. An in vivo approach to inducing selective expansion of Regulatory T (Treg) cells by injecting interleukin-2 (IL-2) mixed with a specific IL-2 monoclonal antibody (JES6-1) was adopted to modulate anti-factor VIII (anti-FVIII) immune responses. Three consecutive IL-2 complexes treatments combined with FVIII plasmid injection prevented anti-FVIII formation and achieved persistent, therapeutic-level of FVIII expression in hemophilia A (HemA) mice. The IL-2 complexes treatment expanded CD4(+)CD25(+)Foxp3(+) Treg cells five- to sevenfold on peak day, and they gradually returned to normal levels within 7-14 days without changing other lymphocyte populations. The transiently expanded Treg cells are highly activated and display suppressive function in vitro. Adoptive transfer of the expanded Treg cells protected recipient mice from generation of high-titer antibodies following FVIII plasmid challenge. Repeated plasmid transfer is applicable in tolerized mice without eliciting immune responses. Mice treated with IL-2 complexes mounted immune responses against both T-dependent and T-independent neoantigens, indicating that IL-2 complexes did not hamper the immune system for long. These results demonstrate the important role of Treg cells in suppressing anti-FVIII immune responses and the potential of developing Treg cell expansion therapies that induce long-term tolerance to FVIII.
Ovarian carcinoma is the most crucial and difficult target for available therapeutic treatments among gynecological malignancies, and great efforts are required to find an effective solution. Molecular studies showed that the chemokine stromal cell-derived factor-1 (also known as CXCL12) and its receptor, CXCR4, are key determinants of tumor initiation, progression and metastasis in ovarian carcinomas. Hence, it is generally believed that blocking the CXCR4/CXCL12 pathway could serve as a potential therapy for patients with ovarian cancer. Herein, we investigated the role of the CXCR4/CXCL12 axis in regulating ovarian cancer progression. Using flow cytometry, a real-time PCR and western blot analyses, we showed that the chemokine receptor CXCR4 protein and mRNA were overexpressed in human epithelial ovarian cancer cell lines, and these were closely correlated with poor outcomes. Moreover, silencing CXCR4 by small hairpin RNA in HTB75 cells reduced cell proliferation, migration and invasion and significantly reduced RhoA and Rac-1/Cdc42 expressions, whereas overexpression of CXCR4 in SKOV3 cells significantly increased cell migration and markedly increased RhoA, Rac-1/Cdc42 levels. Silencing CXCR4 also led to decreased in vitro cytotoxicity of AMD3100, a specific antagonist of CXCR4, which exerts its effect upon CXCR4 expression. Remarkably, knockdown of CXCR4 in HTB75 cells led to a significantly decreased capability to form tumors in vivo, and the Ki67 proliferation index of xenograft tumors showed a dramatic reduction. Our results revealed that the CXCR4/CXCL12 pathway represents a promising therapeutic target for epithelial ovarian carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.