Ovarian carcinoma is the most crucial and difficult target for available therapeutic treatments among gynecological malignancies, and great efforts are required to find an effective solution. Molecular studies showed that the chemokine stromal cell-derived factor-1 (also known as CXCL12) and its receptor, CXCR4, are key determinants of tumor initiation, progression and metastasis in ovarian carcinomas. Hence, it is generally believed that blocking the CXCR4/CXCL12 pathway could serve as a potential therapy for patients with ovarian cancer. Herein, we investigated the role of the CXCR4/CXCL12 axis in regulating ovarian cancer progression. Using flow cytometry, a real-time PCR and western blot analyses, we showed that the chemokine receptor CXCR4 protein and mRNA were overexpressed in human epithelial ovarian cancer cell lines, and these were closely correlated with poor outcomes. Moreover, silencing CXCR4 by small hairpin RNA in HTB75 cells reduced cell proliferation, migration and invasion and significantly reduced RhoA and Rac-1/Cdc42 expressions, whereas overexpression of CXCR4 in SKOV3 cells significantly increased cell migration and markedly increased RhoA, Rac-1/Cdc42 levels. Silencing CXCR4 also led to decreased in vitro cytotoxicity of AMD3100, a specific antagonist of CXCR4, which exerts its effect upon CXCR4 expression. Remarkably, knockdown of CXCR4 in HTB75 cells led to a significantly decreased capability to form tumors in vivo, and the Ki67 proliferation index of xenograft tumors showed a dramatic reduction. Our results revealed that the CXCR4/CXCL12 pathway represents a promising therapeutic target for epithelial ovarian carcinoma.
RING finger protein 135 has an important role in the occurrence of many cancers; however its regulation and function of RNF135 in hepatocellular carcinoma remains unknown. The promoter methylation status and mRNA expression of RNF135 was evaluated by methylation-specific PCR, semi-quantitative RT-PCR, and real-time quantitative PCR in HCC tissues and cell lines, and further analyzed from The Cancer Genome Atlas database. Wound healing assay, transwell migration, cell viability, and colony formation assay were performed to investigate the function of RNF135. GSEA analysis, TIMER database, and ESTIMATE algorithm were used to decipher the associated pathway and immune infiltration. The survival analysis was applied to assess the prognostic value of RNF135. RNF135 expression was downregulated in HCC tissues and 5 of 8 HCC cell lines, and was negatively correlated with its promoter hypermethylation. Demethylating regent decitabine restored RNF135 expression on the cellular level. Knockdown of RNF135 expression enhanced the migration of HCC cells, while RNF135 overexpression and decitabine treatment repressed cell migration. Bioinformatics analysis and immunohistochemistry revealed a positive relationship between RNF135 expression and six immune cell infiltrates (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells). Survival analysis disclosed that RNF135 hypermethylation is independently associated with poor clinical outcomes in HCC. Decreased RNF135 expression driven by promoter hypermethylation frequently occurred in HCC and associated with prognosis of HCC. RNF135 functions as a tumor suppressor and is involved in tumor immune microenvironment in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.