Network anomaly detection (NAD) aims to capture potential abnormal behaviors by observing traffic data over a period of time. In this work, we propose a machine learning framework based on XGBoost and deep neural networks to classify normal traffic and anomalous traffic. Data-driven feature engineering and post-processing are further proposed to improve the performance of the models. The experiment results suggest the proposed model can achieve 94% for F1 measure in the macro average of five labels on real-world traffic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.