The success of mediation is affected by many factors, such as the context of the quarrel, personality of both parties, and the negotiation skill of the mediator, which lead to uncertainty for the predicting work. This paper takes a different approach from previous legal prediction research. It analyzes and predicts whether two parties in a dispute can reach an agreement peacefully through the conciliation of mediation. With the inference result, we can know if the mediation is a more practical and time-saving method to solve the dispute. Existing works about legal case prediction mostly focus on prosecution or criminal cases. In this work, we propose a LSTM-based framework, called LSTMEnsembler, to predict mediation results by assembling multiple classifiers. Among these classifiers, some are powerful for modeling the numerical and categorical features of case information, e.g., XGBoost and LightGBM; and, some are effective for dealing with textual data, e.g., TextCNN and BERT. The proposed LSTMEnsembler aims to not only combine the effectiveness of different classifiers intelligently, but also capture temporal dependencies from previous cases to boost the performance of mediation prediction. Our experimental results show that our proposed LSTMEnsembler can achieve 85.6% for F-measure on real-world mediation data.
Network anomaly detection (NAD) aims to capture potential abnormal behaviors by observing traffic data over a period of time. In this work, we propose a machine learning framework based on XGBoost and deep neural networks to classify normal traffic and anomalous traffic. Data-driven feature engineering and post-processing are further proposed to improve the performance of the models. The experiment results suggest the proposed model can achieve 94% for F1 measure in the macro average of five labels on real-world traffic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.