Application of fertilizers to supply appropriate nutrients has become an essential agricultural strategy for enhancing the efficiency of phytoremediation in heavy metal contaminated soils. The present study was conducted to investigate the beneficial effects of three types of phosphate fertilizers (i.e., oxalic acid-activated phosphate rock (APR), Ca(HPO), and NaHPO) in the range of 0-600 mg P kg soil, on castor bean growth, antioxidants [antioxidative enzymes and glutathione (GSH)], and Cu uptake. Results showed that with the addition of phosphorus fertilizers, the dry weight of castor bean and the Cu concentration in roots increased significantly, resulting in increased Cu extraction. The phosphorus concentration in both shoots and roots was increased as compared with the control, and the Ca(HPO) treatment had the greatest effect. Application of APR, NaHPO, and Ca(HPO) reduced the malondialdehyde (MDA) content, and the activity of the two antioxidant enzymes superoxide dismustase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) in the leaves of castor bean. GSH concentration in leaves increased with the increasing levels of phosphorus applied to soil as well as the accumulation of phosphorus in shoots, compared to the control. These results demonstrated that the addition of phosphorus fertilizers can enhance the resistance of castor bean to Cu and increase the Cu extraction efficiency of the plant from contaminated soils.
The biogeochemical cycling of sulfur (S) in soil has an important impact on the bioavailability of heavy metals and affects the utilization of soil polluted by heavy metals. In addition, S-containing compounds are involved in heavy metal detoxification. This study investigated the effects of S on the toxicity and bioavailability of copper (Cu) in castor (Ricinus communis L.) grown in Cu-contaminated mine tailings. The results showed that the application of S reduced the accumulation of Cu in castor and promoted its growth. With the addition of S, the malondialdehyde (MDA) content of castor leaves decreased significantly compared with control plants, indicating the alleviation of oxidative stress. Superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) content decreased significantly with the alleviation of oxidative stress. The sequential extraction of Cu fractions showed that the application of S significantly reduced the reducible Cu fraction, and increased the oxidizable Cu fraction. It also increased the residual Cu fraction in the soil. The transformation of chemical speciation reduced the bioavailability of Cu in soil, which then reduced the accumulation of Cu in castor. Our results demonstrated that S application was effective at promoting castor growth by reducing the bioavailability and uptake of Cu in Cu-contaminated mine tailings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.