This paper aims to investigate the internal mechanisms of bottlenecks in bike-sharing travel. We perform kernel density analysis to obtain analysis points and areas designated by buffer areas. Additionally, we improve the spatial lag model through Tobit regression, so as to avoid the interference of autocorrelation and to set reasonable constraints for dependent variables. The proposed model distinguishes between bike-sharing demand determined by land use and other built environmental factors, which helps to define and identify bottlenecks in bike-sharing travel. Based on a Bayesian network fault tree, we define the diagnosis mode of evidence nodes to calculate the posterior probabilities and to determine the most sensitive factors for bottlenecks. We use Beijing city as the case study. The results show that the most sensitive factors that induce bottlenecks in bike-sharing travel are few subway stations, few bus stops, few bus lines, a low density of bike lanes, and more serious home–work separation. The findings presented here can enhance the generation of bike-sharing trips in response to bike-sharing development and contribute to adjusting the urban structure and reconstructing the green infrastructure layout.
In this article, a novel reliability model for bike-sharing dispatch is established using a hypothesis test. Based on the bike-sharing trajectory data from hotspot detection, we first perform the kernel density analysis to identify the dispatch points. As a result, a buffer area of 500 meters radius is designated as the studied dispatch area. From a systematic perspective, the reliability of the dispatch system is user-oriented during an ideal period when shared bikes constantly enter and leave the area. We propose the performance function of bike-sharing dispatch, in which the difference between origin and destination (OD) is defined as the main parameter of the failure probability of the system. By adopting different distribution forms, including Poisson distribution, Rayleigh distribution, exponential distribution, normal distribution, and gamma distribution, we examine the distribution characteristics of OD differences. The maximum likelihood estimation (MLE) technique is applied for model calibration, and chi-squared statistics are used to identify the acceptance of the null hypothesis. Finally, we take Beijing city as a case to verify this model. The results show that among many distribution models, the fitting goodness of normal distribution is the best. According to the properties and parameters of the distribution functions, we solve the dispatch scale for bike sharing at different confidence levels, allowing the dispatch strategy to be more flexible. Moreover, we find that the variation of dispatch quantity across different time periods and locations follows a systematic fluctuating trend.
This study aims to investigate the spatial riding characteristics under different demand scenarios using association rule mining with hotspot detection, and to establish the subordinate rules between bike-sharing demand and land elements and between land elements. To reduce deviation from modifiable areal unit problem (MAUP) and improve objectivity and accuracy, we impose spatial constraints using the hotspot detection model instead of the square grid and traditional traffic zone. The bike-sharing trajectory-based kernel density algorithm is employed to explore the optimum analysis locations and the analysis areas with the relatively high demand. More importantly, the research featured here involves five demand scenarios for the differentiation of riding characteristics. The results show that the most significant influencers on bike-sharing demand include financial insurance facilities, dining facilities, and landscapes. As for characteristics of riding destination, the combinations between landscapes and financial insurance facilities, between landscapes and companies/enterprises, and between companies/enterprises and financial insurance facilities are more likely to be visited simultaneously. These findings make us understand urban spatial structure in response to traffic plan and provide evidence for bike-sharing dispatch optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.