Recent heterograft analyses showed that large-scale messenger RNA (mRNA) movement takes place in the phloem, but the number of mobile transcripts reported varies widely. However, our knowledge of the mechanisms underlying large-scale mRNA movement remains limited. In this study, using a /tomato () heterograft system and a transgenic approach involving potato (), we found that: (1) the overall mRNA abundance in the leaf is not a good indicator of transcript mobility to the root; (2) increasing the expression levels of nonmobile mRNAs in the companion cells does not promote their mobility; (3) mobile mRNAs undergo degradation during their movement; and (4) some mRNAs arriving in roots move back to shoots. These results indicate that mRNA movement has both regulated and unregulated components. The cellular origins of mobile mRNAs may differ between herbaceous and woody species. Taken together, these findings suggest that the long-distance movement of mRNAs is a complex process and that elucidating the physiological roles associated with this movement is challenging but remains an important task for future research.
Maize inflorescence provides a useful model to study the genetic and molecular control of meristems. Many classical maize mutants were described last century, providing important insights into the mechanism of developmental control. The fea*-9LB030 is a new maize spontaneous mutant controlled by a single recessive gene. The ears are fasciated in line at the tip with additional and irregular kernel rows on the cob. The tassels are thicker, with increased spikelet density and abnormally developed branches and florets. A relatively new experimental method, SLAF-seq, is used in association analysis. A total of 5,142 polymorphic SLAFs are analyzed and 148 Diff_markers (Ratio_abC2) are procured. Three trait related candidate regions on Chr3 are obtained in association analysis, with 51 candidate genes and a size of 3.947 Mb.
The dynamic alterations of the physiological and molecular processes in reproductive stage soybean indicated the dramatic impact caused by drought. Drought is a major abiotic stress that limits soybean (Glycine max) production. Most prior studies were focused on either model species or crops that are at their vegetative stages. It is known that the reproductive stage of soybean is more susceptible to drought. Therefore, an understanding on the responsive mechanisms during this stage will not only be important for basic plant physiology, but the knowledge can also be used for crop improvement via either genetic engineering or molecular breeding. In this study, physiological measurements and RNA-Seq analysis were used to dissect the metabolic alterations and molecular responses in the leaves of soybean grown at drought condition. Photosynthesis rate, stomata conductance, transpiration, and water potential were reduced. The activities of SOD and CAT were increased, while the activity of POD stayed unchanged. A total of 2771 annotated genes with at least twofold changes were found to be differentially expressed in the drought-stressed plants in which 1798 genes were upregulated and 973 were downregulated. Via KEGG analysis, these genes were assigned to multiple molecular pathways, including ABA biogenesis, compatible compound accumulation, secondary metabolite synthesis, fatty acid desaturation, plant transcription factors, etc. The large number of differentially expressed genes and the diverse pathways indicated that soybean employs complicated mechanisms to cope with drought. Some of the identified genes and pathways can be used as targets for genetic engineering or molecular breeding to improve drought resistance in soybean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.