The dynamic alterations of the physiological and molecular processes in reproductive stage soybean indicated the dramatic impact caused by drought. Drought is a major abiotic stress that limits soybean (Glycine max) production. Most prior studies were focused on either model species or crops that are at their vegetative stages. It is known that the reproductive stage of soybean is more susceptible to drought. Therefore, an understanding on the responsive mechanisms during this stage will not only be important for basic plant physiology, but the knowledge can also be used for crop improvement via either genetic engineering or molecular breeding. In this study, physiological measurements and RNA-Seq analysis were used to dissect the metabolic alterations and molecular responses in the leaves of soybean grown at drought condition. Photosynthesis rate, stomata conductance, transpiration, and water potential were reduced. The activities of SOD and CAT were increased, while the activity of POD stayed unchanged. A total of 2771 annotated genes with at least twofold changes were found to be differentially expressed in the drought-stressed plants in which 1798 genes were upregulated and 973 were downregulated. Via KEGG analysis, these genes were assigned to multiple molecular pathways, including ABA biogenesis, compatible compound accumulation, secondary metabolite synthesis, fatty acid desaturation, plant transcription factors, etc. The large number of differentially expressed genes and the diverse pathways indicated that soybean employs complicated mechanisms to cope with drought. Some of the identified genes and pathways can be used as targets for genetic engineering or molecular breeding to improve drought resistance in soybean.
To investigate the differential responses of super rice grain filling to low filling stage temperature (LT) and the regulative effect of nitrogen panicle fertilizer (NPF), physiological and molecular experiments were conducted with two super rice varieties (Nanjing 7th: N7 and Nanjing 9108th: N9108) on two different filling stage temperature treatments implemented by applying two sowing dates [Normal filling stage temperature (CK): Sowed on May 30, Tmean = 24.7°C and low filling stage temperature (LT): Sowed on July 1, Tmean = 20.3°C], and two NPF levels (0 and 150 kg N ha−1). In this study, LT, NPF, and simultaneous LT and NPF treatments suppressed the grain filling in all varieties with different levels. Under LT or NPF treatments, the reduction of grain weight, seed setting rate, and filling rate were closely associated with suppressed starch biosynthesis rate in inferior seeds, suggesting that reduced starch biosynthesis rate, expression, and activities of enzymes encoded by related genes, Floury endosperm-4 (FLO4), Starch branching enzyme-I (SBE1), and Starch phosphorylase-L (PHO-l), were responsible for the grain filling reduction. Under LT or NPF treatments, significantly higher grain filling rates and lower variance were found in N9108 compared to that in N7, which were closely related to their higher starch biosynthesis ability, related gene expression, and enzymes activities. One of the probable explanations of the grain filling difference was the variation in the relative amount of key regulative hormones, Abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC). These results raise a possibility that super rice with higher sink activities has superior adaptability to LT and NPF due to their higher sink activities.
The remobilization of non-structural carbohydrates (NSCs) in the stem is essential for rice grain filling so as to improve grain yield. We conducted a two-year field experiment to deeply investigate their relationship. Two large-panicle rice varieties with similar spikelet size, CJ03 and W1844, were used to conduct two treatments (removing-spikelet group and control group). Compared to CJ03, W1844 had higher 1000-grain weight, especially for the grain growth of inferior spikelets (IS) after removing the spikelet. These results were mainly ascribed to the stronger sink strength of W1844 than that of CJ03 contrasting in the same group. The remobilization efficiency of NSC in the stem decreased significantly after removing the spikelet for both CJ03 and W1844, and the level of sugar signaling in the T6P-SnRK1 pathway was also significantly changed. However, W1844 outperformed CJ03 in terms of the efficiency of carbon reserve remobilization under the same treatments. More precisely, there was a significant difference during the early grain-filling stage in terms of the conversion of sucrose and starch. Interestingly, the sugar signaling of the T6P and SnRK1 pathways also represented an obvious change. Hence, sugar signaling may be promoted by sink strength to remobilize the NSCs of the rice stem during grain filling to further advance crop yield.
Grains located on different positions of the panicle differed in grain weight and quality performance, however, the comprehensive effect of sowing dates on physiological and quantitative characteristics of grains located on different positions still remains unclear. In this study, a field experiment was conducted with two japonica rice cultivars, Nanjing 9108 and Ningjing 7, under 3 sowing dates (S1, 30th April; S2, 30th May; S3, 30th June). Delayed sowing treatments increased before-heading mean temperature (Tmean), day temperature (Tday), night temperature (Tnight) and mean solar radiation (Smean) for 0.94 °C, 0.99 °C, 1.23 °C, and 1.04 MJ, respectively, while decreased growth duration (GD) for 13.4 days, with 30 days delaying sowing date. Elevated before heading thermal resources and shortened GD contributed to enlarged panicle size via enhancing number of grains on secondary branches (SG) and led to higher ratio of SG per unit area (SG%). Meanwhile, delayed sowing decreased after heading Tmean, Tday, Tnight and Smean by 0.84 °C, 1.23 °C, 1.13 °C, and 2.12 MJ, respectively, with 30 days delaying sowing, and further enhanced rice stickiness (ST), peak viscosity (PKV) and breakdown (BD), but suppressed hardness (HD), amylose content (AC), cold pasting viscosity (CPV), hot pasting viscosity (HPV) and setback (SB) of SG, whilst grains on primary branches (PG) di no significant differences. Elevated taste and cooking quality of SG under delayed sowing was regulated by slower grain filling rate, which is largely regulated by AGPase and GBSS. Compared to PG, SG has better physiochemical, texture properties and RVA profiles due to its slower starch biosynthesis. The above results suggested that physiological (starch biosynthesis of SG) and quantitative parameters (amount of SG) of the rice population should be referred simultaneously to improve rice cooking and taste quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.