Distinct from pure graphene, N-doped graphene (GN) has been found to possess high rate capability and capacity for lithium storage. However, there has still been a lack of direct experimental evidence and fundamental understanding of the storage mechanisms at the atomic scale, which may shed a new light on the reasons of the ultrafast lithium storage property and high capacity for GN. Here we report on the atomistic insights of the GN energy storage as revealed by in situ transmission electron microscopy (TEM). The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ high-resolution TEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0002} spacings and surface hole defects result in improved surface capacitive effects and thus high rate capability and the high capacity are owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.
As the most promising anode material for sodium-ion batteries (SIBs), elemental phosphorus (P) has recently gained a lot of interest due to its extraordinary theoretical capacity of 2596 mAh/g. The main drawback of a P anode is its low conductivity and rapid structural degradation caused by the enormous volume expansion (>490%) during cycling. Here, we redesigned the anode structure by using an innovative methodology to fabricate flexible paper made of nitrogen-doped graphene and amorphous phosphorus that effectively tackles this problem. The restructured anode exhibits an ultrastable cyclic performance and excellent rate capability (809 mAh/g at 1500 mA/g). The excellent structural integrity of the novel anode was further visualized during cycling by using in situ experiments inside a high-resolution transmission electron microscope (HRTEM), and the associated sodiation/desodiation mechanism was also thoroughly investigated. Finally, density functional theory (DFT) calculations confirmed that the N-doped graphene not only contributes to an increase in capacity for sodium storage but also is beneficial in regards to improved rate performance of the anode.
A wire‐shaped flexible dye‐sensitized solar cell (WSF‐DSSC) without any transparent conducting oxide materials is fabricated. The cell has a helical twisting structure formed by two fiber‐like electrodes (100 μm in diameter). Due to the twisting structure, many opaque conducting materials such as metal wire can be applied. It is found that the incident‐light‐angle dependence of the cell's IV output is extremely low.
Electrospun ZnO-SnO2 heterojunction nanofibers are demonstrated to be promising candidates for easily assembled fully transparent high-performance photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.