Purpose
The purpose of this paper is to reveal the friction and wear performance of grooves textured cylindrical roller thrust bearings with different groove dimensions under starved lubrication.
Design/methodology/approach
The groove dimensions include: width of grooves (WOG, 50 µm, 100 µm and 150 µm), depth of grooves (DPOG, 7 µm, 11 µm and 15 µm) as well as groove deflection angle (GDA, 45°). A fiber laser marking system was used to prepare groove patterns on the raceways of shaft washers. The friction and wear properties of grooves textured bearings were researched through a vertical universal wear test rig using a customized roller bearing tribo-pair under starved lubrication. Static finite element analyses were conducted to reveal their surface stresses. Through the comprehensive comparison and analyses, the influence mechanism of grooves on the tribological behavior of cylindrical roller thrust bearings was proposed and discussed.
Findings
When grooves textured bearings run under starved lubrication, their average coefficients of friction (COFs) and wear losses are all significantly reduced and much lower than those of smooth group. The influence of DPOG on the COF curves is significant, while the influence of WOG on the COF curves is a little weak. The influence of groove dimensions on the surface stresses of grooves textured bearings is weak, whether the WOG or DPOG. In this work, when the WOG is 100 µm and the DPOG is 15 µm, its average COF and wear loss are both the lowest, 0.0066 and 0.61 mg, respectively. Compared with the data of smooth group, its friction coefficient is reduced by 75.3% and its mass loss is reduced by 95.8%, showing a significant improvement in this condition.
Originality/value
This work can provide a valuable reference for the raceway design and reliability optimization of rolling element bearings.
To reveal the effect of vein-bionic surface textures on the tribological behavior of cylindrical roller thrust bearings (CRTBs) under starved lubrication, six kinds of leaves (Forsythia, Clausena lansiu, Ash, Purple leaf plum, Pipal and Apricot) were chose and their simplified patterns were fabricated on the shaft washers of CRTBs using laser surface texturing. The coefficients of friction (COFs) of vein-bionic textured bearings were measured using a vertical universal wear test rig. Their mass losses and worn surfaces were also characterized. The results show that: There is important influence of the symmetry of vein-bionic textures and the number of secondary veins on the friction and wear properties of vein-bionic textured CRTBs under starved lubrication. Compared to the smooth group, the COFs and mass losses of vein-bionic textured bearings are all reduced. Among all groups, the tribological performance of bearings with a pattern inspired from Ash is the best. Its wear loss is reduced by 16.23% and its COF is reduced by 15.79%. This work would provide a valuable reference for the raceway design and optimization of roller rolling element bearings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.