Some patients with positive chest CT findings may present with negative results of real time reverse-transcription-polymerase chain-reaction (RT-PCR) for 2019 novel coronavirus (2019-nCoV). In this report, we present chest CT findings from five patients with 2019-nCoV infection who had initial negative RT-PCR results. All five patients had typical imaging findings, including ground-glass opacity (GGO) (5 patients) and/or mixed GGO and mixed consolidation (2 patients). After isolation for presumed 2019-nCoV pneumonia, all patients were eventually confirmed with 2019-nCoV infection by repeated swab tests. A combination of repeated swab tests and CT scanning may be helpful when for individuals with high clinical suspicion of nCoV infection but negative RT-PCR screening Abbreviations PT-PCR=reverse-transcription-polymerase chain-reaction GGO=ground glass opacity
Lung cancer is one of the most devastating diseases worldwide with high incidence and mortality. Hippo (Hpo) pathway is a conserved regulator of organ size in both Drosophila and mammals. Emerging evidence has suggested the significance of Hpo pathway in cancer development. In this study, we identify VGLL4 as a novel tumor suppressor in lung carcinogenesis through negatively regulating the formation of YAP-TEAD complex, the core component of Hpo pathway. Our data show that VGLL4 is frequently observed to be lowly expressed in both mouse and human lung cancer specimens. Ectopic expression of VGLL4 significantly suppresses the growth of lung cancer cells in vitro. More importantly, VGLL4 significantly inhibits lung cancer progression in de novo mouse model. We further find that VGLL4 inhibits the activity of the YAP-TEAD transcriptional complex. Our data show that VGLL4 directly competes with YAP in binding to TEADs and executes its growth-inhibitory function through two TDU domains. Collectively, our study demonstrates that VGLL4 is a novel tumor suppressor for lung cancer through negatively regulating the YAP-TEAD complex formation and thus the Hpo pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.