Background. To investigate the beneficial effect of berberine on gastroesophageal reflux-induced airway hyperresponsiveness (GERAHR) and explore the underlying mechanism. Methods. Coword cluster analysis and strategic coordinates were used to identify hotspots for GERAHR research, and an online tool (STRING, https://string-db.org/) was used to predict the potential relationships between proteins. Guinea pigs with chemically induced GERAHR received PBS or different berberine-based treatments to evaluate the therapeutic effect of berberine and characterize the underlying mechanism. Airway responsiveness was assessed using a plethysmography system, and protein expression was evaluated by western blotting, immunohistochemical staining, and quantitative PCR analysis. Results. Bioinformatics analyses revealed that TRP channels are hotspots of GERAHR research, and TRPA1 is related to the proinflammatory neuropeptide substance P (SP). Berberine, especially at the middle dose tested (MB, 150 mg/kg), significantly improved lung function, suppressed inflammatory cell infiltration, and protected inflammation-driven tissue damage in the lung, trachea, esophagus, and nerve tissues in GERAHR guinea pigs. MB reduced the expression of TRPA1, SP, and tumor necrosis factor-alpha (TNF-α) in evaluated organs and tissues. Meanwhile, the MB-mediated protective effects were attenuated by simultaneous TRPA1 activation. Conclusions. Mechanistically, berberine was found to suppress GERAHR-induced upregulation of TRPA1, SP, and TNF-α in many tissues. Our study has highlighted the potential therapeutic value of berberine for the treatment of GERAHR.
Flexible humidity sensors are effective portable devices for human respiratory monitoring. However, the current preparation of sensitive materials need harsh terms and the small production output limits their practicability. Here, we report a synthesis method of single-crystal BiOBr nanosheets under room temperature and atmospheric pressure based on a sonochemical strategy. A flexible humidity sensor enabled by BiOBr nanosheets deliver efficient sensing performance, a high humidity sensitivity (I
g/I
0 = 550%) with relative humidity from 40% to 100%, an excellent selectivity, and a detection response/recovery time of 11 and 6 s, respectively. The flexible humidity sensor shows a potential application value as a wearable monitoring device for respiratory disease prevention and health monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.