IMPORTANCE Coronavirus disease 2019 (COVID-19) has become a pandemic, and it is unknown whether a combination of public health interventions can improve control of the outbreak. OBJECTIVE To evaluate the association of public health interventions with the epidemiological features of the COVID-19 outbreak in Wuhan by 5 periods according to key events and interventions.DESIGN, SETTING, AND PARTICIPANTS In this cohort study, individual-level data on 32 583 laboratory-confirmed COVID-19 cases reported between December 8, 2019, and March 8, 2020, were extracted from the municipal Notifiable Disease Report System, including patients' age, sex, residential location, occupation, and severity classification. EXPOSURES Nonpharmaceutical public health interventions including cordons sanitaire, traffic restriction, social distancing, home confinement, centralized quarantine, and universal symptom survey. MAIN OUTCOMES AND MEASURESRates of laboratory-confirmed COVID-19 infections (defined as the number of cases per day per million people), across age, sex, and geographic locations were calculated across 5 periods: December 8 to January 9 (no intervention), January 10 to 22 (massive human movement due to the Chinese New Year holiday), January 23 to February 1 (cordons sanitaire, traffic restriction and home quarantine), February 2 to 16 (centralized quarantine and treatment), and February 17 to March 8 (universal symptom survey). The effective reproduction number of SARS-CoV-2 (an indicator of secondary transmission) was also calculated over the periods. RESULTS Among 32 583 laboratory-confirmed COVID-19 cases, the median patient age was 56.7 years (range, 0-103; interquartile range, 43.4-66.8) and 16 817 (51.6%) were women. The daily confirmed case rate peaked in the third period and declined afterward across geographic regions and sex and age groups, except for children and adolescents, whose rate of confirmed cases continued to increase. The daily confirmed case rate over the whole period in local health care workers (130.5 per million people [95% CI, 123.9-137.2]) was higher than that in the general population (41.5 per million people [95% CI, 41.0-41.9]). The proportion of severe and critical cases decreased from 53.1% to 10.3% over the 5 periods. The severity risk increased with age: compared with those aged 20 to 39 years (proportion of severe and critical cases, 12.1%), elderly people (Ն80 years) had a higher risk of having severe or critical disease (proportion, 41.3%; risk ratio, 3.61 [95% CI,) while younger people (<20 years) had a lower risk (proportion, 4.1%; risk ratio, 0.47 [95% CI, 0.31-0.70]). The effective reproduction number fluctuated above 3.0 before January 26, decreased to below 1.0 after February 6, and decreased further to less than 0.3 after March 1. CONCLUSIONS AND RELEVANCEA series of multifaceted public health interventions was temporally associated with improved control of the COVID-19 outbreak in Wuhan, China. These findings may inform public health policy in other countries and regions.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs.
Glycemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here, we aggregated genome-wide association studies in up to 281,416 individuals without diabetes (30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated hemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P <5x10 -8 ), 80% with no significant evidence of between-ancestry heterogeneity. Analyses restricted to European ancestry individuals with equivalent sample size would have led to 24 fewer new loci. Compared to single-ancestry, equivalent sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase understanding of diabetes pathophysiology by use of trans-ancestry studies for improved power and resolution.
2-18. We compared epidemiological characteristics across periods and different demographic groups. We developed a susceptible-exposed-infectious-recovered model to study the epidemic and evaluate the impact of interventions. RESULTSThe median age of the cases was 57 years and 50.3% were women. The attack rate peaked in the third period and substantially declined afterwards across geographic regions, sex and age groups, except for children (age <20) whose attack rate continued to increase. Healthcare workers and elderly people had higher attack rates and severity risk increased with age. The effective reproductive number dropped from 3.86 (95% credible interval 3.74 to 3.97) before interventions to 0.32 (0.28 to 0.37) post interventions. The interventions were estimated to prevent 94.5% (93.7 to 95.2%) infections till February 18. We found that at least 59% of infected cases were unascertained in Wuhan, potentially including asymptomatic and mild-symptomatic . CC-BY-NC-ND 4.0 International license It is made available under a author/funder, who has granted medRxiv a license to display the preprint in perpetuity.is the (which was not peer-reviewed) The copyright holder for this preprint .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.