IMPORTANCE Coronavirus disease 2019 (COVID-19) has become a pandemic, and it is unknown whether a combination of public health interventions can improve control of the outbreak. OBJECTIVE To evaluate the association of public health interventions with the epidemiological features of the COVID-19 outbreak in Wuhan by 5 periods according to key events and interventions.DESIGN, SETTING, AND PARTICIPANTS In this cohort study, individual-level data on 32 583 laboratory-confirmed COVID-19 cases reported between December 8, 2019, and March 8, 2020, were extracted from the municipal Notifiable Disease Report System, including patients' age, sex, residential location, occupation, and severity classification. EXPOSURES Nonpharmaceutical public health interventions including cordons sanitaire, traffic restriction, social distancing, home confinement, centralized quarantine, and universal symptom survey. MAIN OUTCOMES AND MEASURESRates of laboratory-confirmed COVID-19 infections (defined as the number of cases per day per million people), across age, sex, and geographic locations were calculated across 5 periods: December 8 to January 9 (no intervention), January 10 to 22 (massive human movement due to the Chinese New Year holiday), January 23 to February 1 (cordons sanitaire, traffic restriction and home quarantine), February 2 to 16 (centralized quarantine and treatment), and February 17 to March 8 (universal symptom survey). The effective reproduction number of SARS-CoV-2 (an indicator of secondary transmission) was also calculated over the periods. RESULTS Among 32 583 laboratory-confirmed COVID-19 cases, the median patient age was 56.7 years (range, 0-103; interquartile range, 43.4-66.8) and 16 817 (51.6%) were women. The daily confirmed case rate peaked in the third period and declined afterward across geographic regions and sex and age groups, except for children and adolescents, whose rate of confirmed cases continued to increase. The daily confirmed case rate over the whole period in local health care workers (130.5 per million people [95% CI, 123.9-137.2]) was higher than that in the general population (41.5 per million people [95% CI, 41.0-41.9]). The proportion of severe and critical cases decreased from 53.1% to 10.3% over the 5 periods. The severity risk increased with age: compared with those aged 20 to 39 years (proportion of severe and critical cases, 12.1%), elderly people (Ն80 years) had a higher risk of having severe or critical disease (proportion, 41.3%; risk ratio, 3.61 [95% CI,) while younger people (<20 years) had a lower risk (proportion, 4.1%; risk ratio, 0.47 [95% CI, 0.31-0.70]). The effective reproduction number fluctuated above 3.0 before January 26, decreased to below 1.0 after February 6, and decreased further to less than 0.3 after March 1. CONCLUSIONS AND RELEVANCEA series of multifaceted public health interventions was temporally associated with improved control of the COVID-19 outbreak in Wuhan, China. These findings may inform public health policy in other countries and regions.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
2-18. We compared epidemiological characteristics across periods and different demographic groups. We developed a susceptible-exposed-infectious-recovered model to study the epidemic and evaluate the impact of interventions. RESULTSThe median age of the cases was 57 years and 50.3% were women. The attack rate peaked in the third period and substantially declined afterwards across geographic regions, sex and age groups, except for children (age <20) whose attack rate continued to increase. Healthcare workers and elderly people had higher attack rates and severity risk increased with age. The effective reproductive number dropped from 3.86 (95% credible interval 3.74 to 3.97) before interventions to 0.32 (0.28 to 0.37) post interventions. The interventions were estimated to prevent 94.5% (93.7 to 95.2%) infections till February 18. We found that at least 59% of infected cases were unascertained in Wuhan, potentially including asymptomatic and mild-symptomatic . CC-BY-NC-ND 4.0 International license It is made available under a author/funder, who has granted medRxiv a license to display the preprint in perpetuity.is the (which was not peer-reviewed) The copyright holder for this preprint .
The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-density 90K SNP panel. We estimated the levels of molecular diversity and described population structure, which revealed historical relationships between populations and migration events. Three distinct gene pools were identified in pure river as well as in pure swamp buffalo populations. Genomic admixture was seen in the Philippines and in Brazil, resulting from importations of animals for breed improvement. Our results were largely consistent with previous archeological, historical and molecular-based evidence for two independent domestication events for river- and swamp-type buffaloes, which occurred in the Indo-Pakistani region and close to the China/Indochina border, respectively. Based on a geographical analysis of the distribution of diversity, our evidence also indicated that the water buffalo spread out of the domestication centers followed two major divergent migration directions: river buffaloes migrated west from the Indian sub-continent while swamp buffaloes migrated from northern Indochina via an east-south-eastern route. These data suggest that the current distribution of water buffalo diversity has been shaped by the combined effects of multiple migration events occurred at different stages of the post-domestication history of the species.
Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.