HYPB is a human histone H3 lysine 36 (H3K36)-specific methyltransferase and acts as the ortholog of yeast Set2. This study explored the physiological function of mammalian HYPB using knockout mice. Homozygous disruption of Hypb impaired H3K36 trimethylation but not mono-or dimethylation, and resulted in embryonic lethality at E10.5-E11.5. Severe vascular defects were observed in the Hypb −/− embryo, yolk sac, and placenta. The abnormally dilated capillaries in mutant embryos and yolk sacs could not be remodeled into large blood vessels or intricate networks, and the aberrantly rounded mesodermal cells exhibited weakened interaction with endothelial cells. The embryonic vessels failed to invade the labyrinthine layer of placenta, which impaired the embryonic-maternal vascular connection. These defects could not be rescued by wildtype tetraploid blastocysts, excluding the possibility that they were caused by the extraembryonic tissues. Consistent with these phenotypes, gene expression profiling in wild-type and Hypb −/− yolk sacs revealed that the Hypb disruption altered the expression of some genes involved in vascular remodeling. At the cellular level, Hypb −/− embryonic stem cell-derived embryonic bodies, as well as in vitro-cultured human endothelial cells with siRNA-mediated suppression of HYPB, showed obvious defects in cell migration and invasion during vessel formation, suggesting an intrinsic role of Hypb in vascular development. Taken together, these results indicate that Hypb is required for embryonic vascular remodeling and provide a tool to study the function of H3K36 methylation in vasculogenesis/angiogenesis. knockout mice | embryonic lethality | vasculogenesis | angiogenesis | capillary tubule formation
Conventional desalination technologies play a central role in alleviating the crisis of increasing freshwater shortages, however, impeded by high cost, intensive energy consumption and environmental pollution. Solar-driven interfacial evaporation (SDIE)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.