Recombinant Lactococcus lactis MG1363/pMG36e-lacZ exhibiting high β-galactosidase activities were constructed by us in the previous study. However, erythromycin resistance present in these recombinants restricted their practical application in food preparation. This study was conducted to delete the gene coding for erythromycin resistance present in recombinant L. lactis, as a result of which these bacteria express food-grade β-galactosidase. In this study, the recombinant plasmid pMG36e-lacZ was digested with restriction enzymes BclI and HpaI and the food-grade plasmid FGZW was rebuilt. FGZW was transformed into Escherichia coli JM109 and L. lactis MG1363. Erythromycin resistance, enzyme activity determination, gene sequencing and SDS-PAGE analysis indicated that these new recombinant bacteria lost erythromycin resistance and its relevant gene but still expressed β-galactosidase activities, although a decrease in the expression of β-galactosidase of these new strains was observed. The β-galactosidase food-grade expression system was successfully constructed and it could provide a new solution for the management of lactose intolerance. These results might promote the usage of gene-modified microorganisms and related technology in the food sector, which has the highest priority for food safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.