This paper reviews the second challenge on spectral reconstruction from RGB images, i.e., the recovery of wholescene hyperspectral (HS) information from a 3-channel RGB image. As in the previous challenge, two tracks were provided: (i) a "Clean" track where HS images are estimated from noise-free RGBs, the RGB images are themselves calculated numerically using the ground-truth HS images and supplied spectral sensitivity functions (ii) a "Real World" track, simulating capture by an uncalibrated and unknown camera, where the HS images are recovered from noisy JPEG-compressed RGB images. A new, larger-than-ever, natural hyperspectral image data set is presented, containing a total of 510 HS images. The Clean and Real World tracks had 103 and 78 registered participants respectively, with 14 teams competing in the final testing phase. A description of the proposed methods, alongside their challenge scores and an extensive evaluation of top performing methods is also provided. They gauge the state-of-the-art in spectral reconstruction from an RGB image.
This paper reviews the third biennial challenge on spectral reconstruction from RGB images, i.e., the recovery of whole-scene hyperspectral (HS) information from a 3-channel RGB image. This challenge presents the "ARAD 1K" data set: a new, larger-than-ever natural hyperspectral image data set containing 1,000 images. Challenge participants were required to recover hyperspectral information from synthetically generated JPEGcompressed RGB images simulating capture by a known calibrated camera, operating under partially known parameters, in a setting which includes acquisition noise. The challenge was attended by 241 teams, with 60 teams competing in the final testing phase, 12 of which provided detailed descriptions of their methodology which are included in this report. The performance of these submissions is reviewed and provided here as a gauge for the current stateof-the-art in spectral reconstruction from natural RGB images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.