This paper presents an indoor occupancy estimator with which we can estimate the number of real-time indoor occupants based on the carbon dioxide (CO2) measurement. The estimator is actually a dynamic model of the occupancy level. To identify the dynamic model, we propose the Feature Scaled Extreme Learning Machine (FS-ELM) algorithm, which is a variation of the standard Extreme Learning Machine (ELM) but is shown to perform better for the occupancy estimation problem. The measured CO2 concentration suffers from serious spikes. We find that pre-smoothing the CO2 data can greatly improve the estimation accuracy. In real applications, however, we cannot obtain the real-time globally smoothed CO2 data. We provide a way to use the locally smoothed CO2 data instead, which is real-time available. We introduce a new criterion, i.e.x-tolerance accuracy, to assess the occupancy estimator. The proposed occupancy estimator was tested in an office room with 24 cubicles and 11 open seats. The accuracy is up to 94 percent with a tolerance of four occupants.
Abstract-This paper presents two new greedy sensor placement algorithms, named minimum nonzero eigenvalue pursuit (MNEP) and maximal projection on minimum eigenspace (MPME), for linear inverse problems, with greater emphasis on the MPME algorithm for performance comparison with existing approaches. In both MNEP and MPME, we select the sensing locations one-by-one. In this way, the least number of required sensor nodes can be determined by checking whether the estimation accuracy is satisfied after each sensing location is determined. For the MPME algorithm, the minimum eigenspace is defined as the eigenspace associated with the minimum eigenvalue of the dual observation matrix. For each sensing location, the projection of its observation vector onto the minimum eigenspace is shown to be monotonically decreasing w.r.t. the worst case error variance (WCEV) of the estimated parameters. We select the sensing location whose observation vector has the maximum projection onto the minimum eigenspace of the current dual observation matrix. The proposed MPME is shown to be one of the most computationally efficient algorithms. Our MonteCarlo simulations showed that MPME outperforms the convex relaxation method [1], the SparSenSe method [2], and the FrameSense method [3] in terms of WCEV and the mean square error (MSE) of the estimated parameters, especially when the number of available sensor nodes is very limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.