The region-based Convolutional Neural Network (CNN) detectors such as Faster R-CNN or R-FCN have already shown promising results for object detection by combining the region proposal subnetwork and the classification subnetwork together. Although R-FCN has achieved higher detection speed while keeping the detection performance, the global structure information is ignored by the positionsensitive score maps. To fully explore the local and global properties, in this paper, we propose a novel fully convolutional network, named as CoupleNet, to couple the global structure with local parts for object detection. Specifically, the object proposals obtained by the Region Proposal Network (RPN) are fed into the the coupling module which consists of two branches. One branch adopts the positionsensitive RoI (PSRoI) pooling to capture the local part information of the object, while the other employs the RoI pooling to encode the global and context information. Next, we design different coupling strategies and normalization ways to make full use of the complementary advantages between the global and local branches. Extensive experiments demonstrate the effectiveness of our approach. We achieve state-of-the-art results on all three challenging datasets, i.e. a mAP of 82.7% on VOC07, 80.4% on VOC12, and 34.4% on COCO. Codes will be made publicly available 1 .
The field of object detection has made great progress in recent years. Most of these improvements are derived from using a more sophisticated convolutional neural network. However, in the case of humans, the attention mechanism, global structure information, and local details of objects all play an important role for detecting an object. In this paper, we propose a novel fully convolutional network, named as Attention CoupleNet, to incorporate the attention-related information and global and local information of objects to improve the detection performance. Specifically, we first design a cascade attention structure to perceive the global scene of the image and generate class-agnostic attention maps. Then the attention maps are encoded into the network to acquire object-aware features. Next, we propose a unique fully convolutional coupling structure to couple global structure and local parts of the object to further formulate a discriminative feature representation. To fully explore the global and local properties, we also design different coupling strategies and normalization ways to make full use of the complementary advantages between the global and local information. Extensive experiments demonstrate the effectiveness of our approach. We achieve state-of-the-art results on all three challenging data sets, i.e., a mAP of 85.7% on VOC07, 84.3% on VOC12, and 35.4% on COCO. Codes are publicly available at https://github.com/tshizys/CoupleNet.
This paper proposes a novel multi-modal gesture recognition framework and introduces its application to continuous sign language recognition. A Hidden Markov Model is used to construct the audio feature classifier. A skeleton feature classifier is trained to provided complementary information based on the Dynamic Time Warping model. The confidence scores generated by two classifiers are firstly normalized and then combined to produce a weighted sum for the final recognition. Experimental results have shown that the precision and recall scores for 20 classes of our multi-modal recognition framework can achieve 0.8829 and 0.8890 respectively, which proves that our method is able to correctly reject false detection caused by single classifier. Our approach scored 0.12756 in mean Levenshtein distance and was ranked 1st in the Multi-modal Gesture Recognition Challenge in 2013.
Transformer has achieved great success in computer vision, while how to split patches in an image remains a problem. Existing methods usually use a fixed-size patch embedding which might destroy the semantics of objects. To address this problem, we propose a new Deformable Patch (DePatch) module which learns to adaptively split the images into patches with different positions and scales in a data-driven way rather than using predefined fixed patches. In this way, our method can well preserve the semantics in patches. The DePatch module can work as a plug-and-play module, which can easily be incorporated into different transformers to achieve an end-to-end training. We term this DePatch-embedded transformer as Deformable Patch-based Transformer (DPT) and conduct extensive evaluations of DPT on image classification and object detection. Results show DPT can achieve 81.9% top-1 accuracy on ImageNet classification, and 43.7% box mAP with RetinaNet, 44.3% with Mask R-CNN on MSCOCO object detection. Code has been made available at: https://github.com/CASIA-IVA-Lab/DPT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.