Fusarium graminearum contains eight chitin synthase (Chs) genes belonging to seven classes. Previous studies have found that deletion of FgChs3b is lethal to F. graminearum, and deletion of FgChs1, FgChs2, FgChs7 and FgChs5 caused diverse defects in chitin content, mycelial growth, conidiation, virulence or stress responses. However, little is known about the functional relationships among these FgChss. In this study, FgChs2 deletion mutant ΔFgChs2 exhibited reduced mycelial growth and virulence as reported previously. In addition, we found that the mutant produced thickened and “wavy” septa. Quantitative real-time PCR (qRT-PCR) assays showed that the expression levels of FgChs1, FgChs3a, FgChs4, FgChs7, FgChs5 and FgChs6 in ΔFgChs2 were significantly higher than those in the wild type. Therefore, we generated six double deletion mutants of FgChs2 and each of the above six FgChss, and found that FgChs2 shares a function with FgChs1 in regulating mycelial growth, and co-regulates conidiation with FgChs1, FgChs4, FgChs7 and FgChs5. Furthermore, FgChs2 and other six FgChss have overlapped functions in virulence, DON production and septum formation. Taken together, these results indicate that although each chitin synthase of F. graminearum plays certain roles, FgChss may co-regualte various cellular processes in F. graminearum.
E-cadherin is a major cell-cell adhesion molecule involved in mechanotransduction at cell-cell contacts in tissues. Because epithelial cells respond to rigidity and tension in tissue through E-cadherin, there must be active processes that test and respond to the mechanical properties of these adhesive contacts. Using submicrometer, E-cadherin–coated polydimethylsiloxane pillars, we find that cells generate local contractions between E-cadherin adhesions and pull to a constant distance for a constant duration, irrespective of pillar rigidity. These cadherin contractions require nonmuscle myosin IIB, tropomyosin 2.1, α-catenin, and binding of vinculin to α-catenin. Cells spread to different areas on soft and rigid surfaces with contractions, but spread equally on soft and rigid without. We further observe that cadherin contractions enable cells to test myosin IIA–mediated tension of neighboring cells and sort out myosin IIA–depleted cells. Thus, we suggest that epithelial cells test and respond to the mechanical characteristics of neighboring cells through cadherin contractions.
The mechanisms controlling the dynamics of expansion of adherens junctions are significantly less understood than those controlling their static properties. Here, we report that for suspended cell aggregates, the time to form a new junction between two cells speeds up with the number of junctions that the cells are already engaged in. Upon junction formation, the activation of the Epidermal Growth Factor Receptor (EGFR) distally affects the actin turnover dynamics of the cell-free cortex. The “primed” actin cortex results in a faster expansion of the subsequent new junctions. In such aggregates, we show that this mechanism results in a cooperative acceleration of the junction expansion dynamics (kinetype) but leaves the cell contractility, and hence the final junction size (phenotype), unaltered.
Human silencers have been shown to exist and regulate developmental gene expression. However, the functional importance of human silencers needs to be elucidated such as the working mechanism and whether they can form "super-silencers". Here, through interrogating two putative silencer components of FGF18 gene, we found that two silencers can cooperate via compensated chromatin interactions to form a "super-silencer". Furthermore, double knock-out of two silencers exhibited synergistic upregulation of FGF18 expression and changes of cell identity. To disturb the "super-silencers", we applied combinational treatment of an EZH2 inhibitor GSK343, and a REST inhibitor, X5050 ("GR"). We found that GR led to severe loss of TADs and loops, while the use of just one inhibitor by itself only showed mild changes. Such changes of TADs and loops may due to reduced CTCF protein level observed upon GR treatment. Moreover, GSK343 and X5050 worked together synergistically to upregulate the apoptotic genes controlled by super-silencers, and thus gave rise to antitumor effects including apoptosis, cell cycle arrest and tumor growth inhibition. Overall, our data demonstrated the first example of a "super-silencer" and showed that combinational usage of GSK343 and X5050 could potentially lead to cancer ablation through disruption of "super-silencers".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.