In the context of today ’s pattern of globalization and a huge amount of information, a smart supply management chain is required. Naturally, statistics and operations research are used for optimizing supply and demand objectives. However, the new context brings out new opportunities at descriptive, predictive and prescriptive levels for supply chain network design, logistics and distribution and strategic sourcing. The key question is still how to capture and to use information. One striking example can be taken from social media, where their use allow to gain insight into the perception of consumers and to capture a real time overview of consumer reactions, regarding one or more specific events. In this regard, different modern approaches, such as IoT or Quantum neural network, are developed. In the same line of thought, we propose an analytic approach, based on KNN, Logistic Regression and SVM with the use of Twitter data in chicken supply chain management. Results identify the main concerns related to chicken products and allow to the development of a consumer-centric supply chain. The proposed approach can be extended to other topics such as anomaly detection and codification of customer intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.