The main purpose of this study is to examine the incremental information content of operating cash flows in predicting financial distress and thus develop reliable failure prediction models for UK public industrial firms. Neural networks and logit methodology were employed to a dataset of fifty-one matched pairs of failed and non-failed UK public industrial firms over the period 1988-97. The final models are validated using an out-of-sample-period ex-ante test and the Lachenbruch jackknife procedure. The results indicate that a parsimonious model that includes three financial variables, a cash flow, a profitability and a financial leverage variable, yielded an overall correct classification accuracy of 83% one year prior to the failure. In summary, our models can be used to assist investors, creditors, managers, auditors and regulatory agencies in the UK to predict the probability of business failure.
Optimal signaling for secrecy rate maximization in Gaussian MIMO wiretap channels is considered.While this channel has attracted a significant attention recently and a number of results have been obtained, including the proof of the optimality of Gaussian signalling, an optimal transmit covariance matrix is known for some special cases only and the general case remains an open problem. An iterative custom-made algorithm to find a globally-optimal transmit covariance matrix in the general case is developed in this paper, with guaranteed convergence to a global optimum. While the original optimization problem is not convex and hence difficult to solve, its minimax reformulation can be solved via the convex optimization tools, which is exploited here. The proposed algorithm is based on the barrier method extended to deal with a minimax problem at hand. Its convergence to a global optimum is proved for the general case (degraded or not) and a bound for the optimality gap is given for each step of the barrier method. The performance of the algorithm is demonstrated via numerical examples. In particular, 20 to 40 Newton steps are already sufficient to solve the sufficient optimality conditions with very high precision (up to the machine precision level), even for large systems. Even fewer steps are required if the secrecy capacity is the only quantity of interest. The algorithm can be significantly simplified for the degraded channel case and can also be adopted to include the per-antenna power constraints (instead or in addition to the total power constraint). It also solves the dual problem of minimizing the total power subject to the secrecy rate constraint.S. Loyka is with the
The relation between nonanticipative Rate Distortion Function (RDF) and filtering theory is discussed on abstract spaces. The relation is established by imposing a realizability constraint on the reconstruction conditional distribution of the classical RDF. Existence of the extremum solution of the nonanticipative RDF is shown using weak * -convergence on appropriate topology. The extremum reconstruction conditional distribution is derived in closed form, for the case of stationary processes.The realization of the reconstruction conditional distribution which achieves the infimum of the nonanticipative RDF is described. Finally, an example is presented to illustrate the concepts.
We deal with zero-delay source coding of a vector-valued Gauss-Markov source subject to a mean-squared error (MSE) fidelity criterion characterized by the operational zero-delay vector-valued Gaussian rate distortion function (RDF). We address this problem by considering the nonanticipative RDF (NRDF) which is a lower bound to the causal optimal performance theoretically attainable (OPTA) function (or simply causal RDF) and operational zero-delay RDF. We recall the realization that corresponds to the optimal "test-channel" of the Gaussian NRDF, when considering a vector Gauss-Markov source subject to a MSE distortion in the finite time horizon. Then, we introduce sufficient conditions to show existence of solution for this problem in the infinite time horizon (or asymptotic regime). For the asymptotic regime, we use the asymptotic characterization of the Gaussian NRDF to provide a new equivalent realization scheme with feedback which is characterized by a resource allocation (reverse-waterfilling) problem across the dimension of the vector source. We leverage the new realization to derive a predictive coding scheme via lattice quantization with subtractive dither and joint memoryless entropy coding. This coding scheme offers an upper bound to the operational zero-delay vector-valued Gaussian RDF. When we use scalar quantization, then for r active dimensions of the vector Gauss-Markov source the gap between the obtained lower and theoretical upper bounds is less than or equal to 0.254r + 1 bits/vector. However, we further show that it is possible when we use vector quantization, and assume infinite dimensional Gauss-Markov sources to make the previous gap to be negligible, i.e., Gaussian NRDF approximates the operational zero-delay Gaussian RDF. We also extend our results to vector-valued Gaussian sources of any finite memory under mild conditions. Our theoretical framework is demonstrated with illustrative numerical experiments.
In this paper, we develop finite-time horizon causal filters using the nonanticipative rate distortion theory. We apply the developed theory to design optimal filters for time-varying multidimensional Gauss-Markov processes, subject to a mean square error fidelity constraint. We show that such filters are equivalent to the design of an optimal {encoder, channel, decoder}, which ensures that the error satisfies a fidelity constraint. Moreover, we derive a universal lower bound on the mean square error of any estimator of time-varying multidimensional Gauss-Markov processes in terms of conditional mutual information. Unlike classical Kalman filters, the filter developed is characterized by a reverse-waterfilling algorithm, which ensures that the fidelity constraint is satisfied. The theoretical results are demonstrated via illustrative examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.