Polymycoviridae is a growing family of mycoviruses whose members typically have non-conventional capsids and multi-segmented, double-stranded (ds) RNA genomes. Beauveria bassiana polymycovirus (BbPmV) 1 is known to enhance the growth and virulence of its fungal host, the entomopathogenic ascomycete and popular biological control agent B. bassiana. Here we report the complete sequence of BbPmV-3, which has six genomic dsRNA segments. Phylogenetic analysis of RNA-dependent RNA polymerase (RdRp) protein sequences revealed that BbPmV-3 is closely related to the partially sequenced BbPmV-2 but not BbPmV-1. Nevertheless, both BbPmV-3 and BbPmV-1 have similar effects on their respective host isolates ATHUM 4946 and EABb 92/11-Dm, affecting pigmentation, sporulation, and radial growth. Production of conidia and radial growth are significantly enhanced in virus-infected isolates as compared to virus-free isogenic lines on Czapek-Dox complete and minimal media that contain sucrose and sodium nitrate. However, this polymycovirus-mediated effect on growth is dependent on the carbon and nitrogen sources available to the host fungus. Both BbPmV-3 and BbPmV-1 increase growth of ATHUM 4946 and EABb 92/11-Dm when sucrose is replaced by lactose, trehalose, glucose, or glycerol, while the effect is reversed on maltose and fructose. Similarly, both BbPmV-3 and BbPmV-1 decrease growth of ATHUM 4946 and EABb 92/11-Dm when sodium nitrate is replaced by sodium nitrite, potassium nitrate, or ammonium nitrate. In conclusion, the effects of polymycoviruses on B. bassiana are at least partially mediated via its metabolic pathways.
The use of mycoviruses to manipulate the virulence of entomopathogenic fungi employed as biocontrol agents may lead to the development of novel methods to control attacks by insect pests. Such approaches are urgently required, as existing agrochemicals are being withdrawn from the market due to environmental and health concerns. The aim of this work is to investigate the presence and diversity of mycoviruses in large panels of entomopathogenic fungi, mostly from Spain and Denmark. In total, 151 isolates belonging to the genera Beauveria, Metarhizium, Lecanicillium, Purpureocillium, Isaria, and Paecilomyces were screened for the presence of dsRNA elements and 12 Spanish B. bassiana isolates were found to harbor mycoviruses. All identified mycoviruses belong to three previously characterised species, the officially recognised Beauveria bassiana victorivirus 1 (BbVV-1) and the proposed Beauveria bassiana partitivirus 2 (BbPV-2) and Beauveria bassiana polymycovirus 1 (BbPmV-1); individual B. bassiana isolates may harbor up to three of these mycoviruses. Notably, these mycovirus species are under distinct selection pressures, while recombination of viral genomes increases population diversity. Phylogenetic analysis of the RNA-dependent RNA polymerase gene sequences revealed that the current population structure in Spain is potentially a result of both vertical and horizontal mycovirus transmission. Finally, pathogenicity experiments using the Mediterranean fruit fly Ceratitis capitata showed no direct correlation between the presence of any particular mycovirus and the virulence of the B. bassiana isolates, but illustrated potentially interesting isolates that exhibit relatively high virulence, which will be used in more detailed virulence experimentation in the future.
The cosmopolitan insect-pathogenic fungus and popular biocontrol agent Beauveria bassiana can be used to control Anopheles mosquito populations and restrict the spread of malaria, the deadliest vector-borne infectious disease in the world caused by the protozoan parasite Plasmodium. Here, we establish that infection with a double-stranded (ds)RNA mycovirus, Beauveria bassiana polymycovirus (BbPmV)-1, significantly reduces B. bassiana virulence against A. coluzzii, the main vector of malaria. The BbPmV-1-mediated hypovirulence can be at least partially attributed to slow fungal growth on the mosquitos. Analysis of the dual next-generation sequencing of the B. bassiana and A. coluzzii transcriptomes provided insight into the molecular mechanisms of the BbPmV-1-mediated effects. BbPmV-1-free B. bassiana has a wide impact on the A. coluzzii transcriptome, affecting immunity and metabolism, and led to the identification of novel immune response proteins. BbPmV-1 regulates the gene expression profile of its fungal host, directing the use of available resources towards sporulation and suppressing the mosquito immune system. Additionally, BbPmV-1-infected and -free B. bassiana strains differentially modulate mosquito gut microbiota; the former reduces the bacterial genus Elizabethkingia and the latter Serratia. Co-transfection of mosquitos with B. bassiana and P. berghei revealed a reduction of ookinetes in the presence of BbPmV-1, potentially due to the upregulation of a mycotoxin. Finally, BbPmV-1-mediated hypovirulence is at least partially dependent on the A. coluzzii RNAi pathway, and silencing of the dicer-2 gene restores virulence. Taken together, our data clearly demonstrate the crucial role of mycovirus infection in mediating B. bassiana virulence against A. coluzzii and suggest that BbPmV-1 protects A. coluzzii from B. bassiana, the mosquito’s own immune system, potentially harmful gut microbiota, and Plasmodium parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.