Deep learning-based side channel attacks are burgeoning due to their better efficiency and performance, suppressing the traditional side-channel analysis. To launch the successful attack on a particular public key cryptographic (PKC) algorithm, a large number of samples per trace might need to be acquired to capture all the minor useful details from the leakage information, which increases the number of features per instance. The decreased instance-feature ratio increases the computational complexity of the deep learning-based attacks, limiting the attack efficiency. Moreover, data class imbalance can be a hindrance in accurate model training, leading to an accuracy paradox. We propose an efficient Convolutional Neural Network (CNN) based approach in which the dimensionality of the large leakage dataset is reduced, and then the data is processed using the proposed CNN based model. In the proposed model, the optimal number of convolutional blocks is used to build powerful features extractors within the cost limit. We have also analyzed and presented the impact of using the Synthetic Minority Over-sampling Technique (SMOTE) on the proposed model performance. We propose that a data-balancing step should be mandatory for analysis in the side channel attack scenario. We have also provided a performance-based comparative analysis between proposed and existing deep learning models for unprotected and protected Elliptic curve (ECC) Montgomery Power ladder implementations. The reduced network complexity, together with an improved attack efficiency, promote the proposed approach to be effectively used for side-channel attacks.
Critical infrastructures and associated real time Informational systems need some security protection mechanisms that will be able to detect and respond to possible attacks. For this reason, Anomaly Detection Systems (ADS), as part of a Security Information and Event Management (SIEM) system, are needed for constantly monitoring and identifying potential threats inside an Information Technology (IT) system. Typically, ADS collect information from various sources within a CI system using security sensors or agents and correlate that information so as to identify anomaly events. Such sensors though in a CI setting (factories, power plants, remote locations) may be placed in open areas and left unattended, thus becoming targets themselves of security attacks. They can be tampering and malicious manipulated so that they provide false data that may lead an ADS or SIEM system to falsely comprehend the CI current security status. In this paper, we describe existing approaches on security monitoring in critical infrastructures and focus on how to collect security sensor–agent information in a secure and trusted way. We then introduce the concept of hardware assisted security sensor information collection that improves the level of trust (by hardware means) and also increases the responsiveness of the sensor. Thus, we propose a Hardware Security Token (HST) that when connected to a CI host, it acts as a secure anchor for security agent information collection. We describe the HST functionality, its association with a host device, its expected role and its log monitoring mechanism. We also provide information on how security can be established between the host device and the HST. Then, we introduce and describe the necessary host components that need to be established in order to guarantee a high security level and correct HST functionality. We also provide a realization–implementation of the HST overall concept in a FPGA SoC evaluation board and describe how the HST implementation can be controlled. In addition, in the paper, two case studies where the HST has been used in practice and its functionality have been validated (one case study on a real critical infrastructure test site and another where a critical industrial infrastructure was emulated in our lab) are described. Finally, results taken from these two case studies are presented, showing actual measurements for the in-field HST usage.
A significant concern for the candidate schemes of the NIST postquantum cryptography standardization project is the protection they support against side-channel attacks. One of these candidate schemes currently in the NIST standardization race is the Dilithium signature scheme. This postquantum signature solution has been analyzed for side channel attack resistance especially against timing attacks. Expanding our attention on other types of side-channel analysis, this work is focused on correlation based differential side channel attacks on the polynomial multiplication operation of Dilithium digital signature generation. In this paper, we describe how a Correlation Power Attack should be adapted for the Dilithium signature generation and describe the attack process to be followed. We determine the conditions to be followed in order for such an attack to be feasible, (isolation of polynomial coefficient multiplication inpower traces) and we create a power trace profiling paradigm for the Dilithium signature scheme executed in embedded systems to showcase that the conditions can be met in practice. Expanding the methodology of recent works that mainly use simulations for power trace collection, in this paper, power trace capturing and profiling analysis of the signature generation process was succesfully done on a, noisy, Commercial off-the-shelf ARM Cortex-M4 embedded system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.