A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.
Shale-gas and tight gas reservoirs consist of porous structures with pore diameter in the range of 1 to 200 nm. At these scales, the pore diameter becomes comparable to the gas mean free path. Flows in these structures fail often in the transition and slip flow regimes. Standard continuum fluid methods such as the Navier-Stokes-Fourier (NSF) set of equations fail to describe flows of these regimes. We present a direct-simulation monte carlo (DSMC) study of a 3D porous structure in an unlimited parallel simulation. The 3D geometry was obtained with microcomputedtomography (micro-CT). The gas considered is CH 4 (100%), and the gas intermolecular-collision model for the simulation is the variable hard sphere (VHS). Simulations were carried out for three different Knudsen (Kn) numbers within the transition and slip flow regimes. The results demonstrate some of the significant differences that appear in gas-flow properties depending on the Kn number and the flow regime. In addition, the velocity profile appears to depend on the Kn number. At the inlet of the porous structures, more-uniform velocity profile occurs for the three Kn numbers. At the outlet, the velocity profile varies depending on the Kn number. For Kn % 0.037, a parabolic shape is observed for the velocity profile, whereas a more-uniform shape is observed for Kn % 3.7.
Classical continuum methods break down for rarefied gas flows in micro-channels. Two noncontinuum hydrodynamic models are investigated here: compressible Korteweg fluid-like and Bi-Velocity (Volume Diffusion) hydrodynamic models. The pressure driven rarefied gas flow in a rectangular micro-channel in the whole range of Knudsen number is numerically considered. The Korteweg model shows improved results in comparison with standard Navier-Stokes up to Knudsen number of unity. The Bi-Velocity method is found to allow a match between experiments and numerical results over the full range of Knudsen number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.