The effect of anthropogenic activity relating to industrial and economic development has had a detrimental impact on the environment and human health, and hence the need for continued research. Five common African vegetables-Murraya koenigii, Ocimum gratissimum, Amaranthus hybridus, Capsicum annuum and Moringa oleifera were used to study absorption of Lead, Cadmium, Cobalt and Zinc from soils inoculated with metal ions. 0.1 M and 0.5 M solutions of the metal ions were used in the inoculation. Each of the plants was collected in the first instance at 8 weeks, and then at 10 weeks of inoculating.
Public pipe-borne water system had collapsed in Anambra state of Nigeria, for over fifteen years, challenging the residents of the state to resort to alternative sources of potable water, notably, boreholes. It is imperative to continuously assess the quality of the water. In this work, two boreholes each in nineteen communities, one from Aguluzigbo, in three local government areas (Anaocha, Awka-North, Awka-South) in the state were sampled, and tested for pH, Conductivity, Hardness, Total Suspended Solids, Lead, Arsenic, Cadmium, Bacteria and Yeast loads. The water samples were all soft and mostly acidic. While there were not much threats of yeast, the aerobic bacteria counts were above the acceptable limits. The Lead, Arsenic and Cadmium concentrations were above the tolerable limits in most communities in Anaocha and Awka-South. Arsenic, Lead, Cadmium were absent in all the samples in Awka-North except in four communities where Cadmium was present. Suspended solid contents were also high in all the Local Government Areas. Overall, the quality of the water consumed by the people in the selected population calls to question of the water and sanitation component of the public health system.
New benzohydrazone compound, 4-amino-N'-[(1E)-1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene] benzohydrazide (HL1) and its Cu(II), Ni(II), Zn(II) and Mn(II) complexes were synthesized. The structures of HL1 and its complexes were elucidated by elemental analysis and IR, UV-Vis, 1H and 13C NMR spectroscopy and mass spectrometry. The infrared spectral data of the complexes revealed that HL1 coordinated with the metal ions through azomethine nitrogen, enolic oxygen and amide carbonyl oxygen atoms, hence, HL1 behaves as a monobasic tridentate ligand. UV-Vis data revealed that Zn(II) and Mn(II) complexes adopted octahedral geometry, while Cu(II) and Ni(II) complexes had five-coordinate and square-planar geometries respectively. The mass spectra data and elemental analysis values are in accordance with the calculated values for the suggested molecular formula of the complexes, a confirmation of the 1:1 ligand to metal stoichiometry in case of Cu(II) complex and 2:1 ligands to metal stoichiometry in case of the other complexes.
Iodine Deficiency Diseases (IDDs) occupy important positions in the health problems of developing countries. Salt Iodisation has been the common approach to solving these problems. However, apart from the problems of lack of compliance by salt manufacturers, and inculturation of the consumers, health conditions aggravated by high salt intake by humans have become increasingly relevant. These problems can be eliminated if the commonly produced and consumed plants are fortified with Iodine. The prospects are in the inclusion of Iodine-containing compounds in the inorganic fertilizers used by farmers. In this study, Potassium Iodide and Potassium Iodate were used as inoculants. Five different concentrations-0.1 M, 0.2 M, 0.3 M, 0.4 M, and 0.5 M of Potassium Iodide and Potassium Iodate solutions were used to inoculate the soils on which the following edible African plants were planted: Murraya koenigii; Ocimum gratissimum; Cucurbita pepo; Solanum nigrum; Amaranthus hybridus and Abelmoschus esclentus, Corchorous olitoruis, Solanum lycopersicum, Zingiber officinale, Telfairia occidentalis, Talinium triangulare, Solanum melongena. Controls were also planted. After 14 days, alkaline dry ash method was used to determine the Iodine concentrations in the plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.