We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and a savings in computer time compared with frequently used compressible codes. Our equation set is derived from the fully compressible equations using low Mach number asymptotics, but without any restriction on the size of perturbations in density or temperature. Comparisons with simulations that use the fully compressible equations validate the low Mach number model in regimes where both are applicable. Comparisons to simulations based on the more traditional anelastic approximation also demonstrate the agreement of these models in the regime for which the anelastic approximation is valid. For low Mach number flows with potentially finite amplitude variations in density and temperature, the low Mach number model overcomes the limitations of each of the more traditional models and can serve as the basis for an accurate and efficient simulation tool.
A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward-propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and KelvinHelmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed burning regime, around densities of 10 7 g cm À3 , through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long timescales. As the density is varied, we see a fundamental change in the character of the burning: at the low end of the density range, the Rayleigh-Taylor instability dominates the burning, whereas at the high end, the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.
We introduce a numerical model for the simulation of nuclear flames in Type Ia supernovae. This model is based on a low Mach number formulation that analytically removes acoustic wave propagation while retaining the compressibility effects resulting from nuclear burning. The formulation presented here generalizes low Mach number models used in combustion that are based on an ideal gas approximation to the arbitrary equations of state such as those describing the degenerate matter found in stellar material. The low Mach number formulation permits time steps that are controlled by the advective time scales resulting in a substantial improvement in computational efficiency compared to a compressible formulation. We briefly discuss the basic discretization methodology for the low Mach number equations and their implementation in an adaptive projection framework. We present validation computations in which the computational results from the low Mach number model are compared to a compressible code and present an application of the methodology to the Landau-Darrieus instability of a carbon flame.
Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low-Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1:5 ; 10 7 g cm À3 , and half-carbon, half-oxygen fuel: conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation and show that while fire polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. On the basis of the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.