Experimental design and safety The central aim of this study was to assess how the route and dose of BCG vaccination influence systemic and tissue-resident T cell immunity, and protection after Mtb challenge. Rhesus macaques were vaccinated with 5 × 10 7 colony-forming units (CFUs) of BCG by intradermal (ID high), AE or IV routes, or with a combination of both AE (5 × 10 7 CFUs) and ID
To investigate the role of Toll-like receptor (TLR)9 in the immune response to mycobacteria as well as its cooperation with TLR2, a receptor known to be triggered by several major mycobacterial ligands, we analyzed the resistance of TLR9−/− as well as TLR2/9 double knockout mice to aerosol infection with Mycobacterium tuberculosis. Infected TLR9−/− but not TLR2−/− mice displayed defective mycobacteria-induced interleukin (IL)-12p40 and interferon (IFN)-γ responses in vivo, but in common with TLR2−/− animals, the TLR9−/− mice exhibited only minor reductions in acute resistance to low dose pathogen challenge. When compared with either of the single TLR-deficient animals, TLR2/9−/− mice displayed markedly enhanced susceptibility to infection in association with combined defects in proinflammatory cytokine production in vitro, IFN-γ recall responses ex vivo, and altered pulmonary pathology. Cooperation between TLR9 and TLR2 was also evident at the level of the in vitro response to live M. tuberculosis, where dendritic cells and macrophages from TLR2/9−/− mice exhibited a greater defect in IL-12 response than the equivalent cell populations from single TLR9-deficient animals. These findings reveal a previously unappreciated role for TLR9 in the host response to M. tuberculosis and illustrate TLR collaboration in host resistance to a major human pathogen.
Host resistance to the intracellular protozoan Toxoplasma gondii is highly dependent on early IL-12 production by APC. We demonstrate here that both host resistance and T. gondii-induced IL-12 production are dramatically reduced in mice lacking the adaptor molecule MyD88, an important signaling element used by Toll-like receptor (TLR) family members. Infection of MyD88-deficient mice with T. gondii resulted in uncontrolled parasite replication and greatly reduced plasma IL-12 levels. Defective IL-12 responses to T. gondii Ags (soluble tachyzoite Ag (STAg)) were observed in MyD88−/− peritoneal macrophages, neutrophils, and splenic dendritic cells (DC). In contrast, DC from TLR2- or TLR4-deficient animals developed normal IL-12 responses to STAg. In vivo treatment with pertussis toxin abolished the residual IL-12 response displayed by STAg-stimulated DC from MyD88−/− mice. Taken together, these data suggest that the induction of IL-12 by T. gondii depends on a unique mechanism involving both MyD88 and G protein-coupled signaling pathways.
Reactivation of latent tuberculosis contributes significantly to the incidence of disease caused by Mycobacterium tuberculosis. The mechanisms involved in the containment of latent tuberculosis are poorly understood. Using the low-dose model of persistent murine tuberculosis in conjunction with MP6-XT22, a monoclonal antibody that functionally neutralizes tumor necrosis factor alpha (TNF-␣), we examined the effects of TNF-␣ on the immunological response of the host in both persistent and reactivated tuberculous infections. The results confirm an essential role for TNF-␣ in the containment of persistent tuberculosis. TNF-␣ neutralization resulted in fatal reactivation of persistent tuberculosis characterized by a moderately increased tissue bacillary burden and severe pulmonic histopathological deterioration that was associated with changes indicative of squamous metaplasia and fluid accumulation in the alveolar space. Analysis of pulmonic gene and protein expression of mice in the low-dose model revealed that nitric oxide synthase was attenuated during MP6-XT22-induced reactivation, but was not totally suppressed. Interleukin-12p40 and gamma interferon gene expression in TNF-␣-neutralized mice was similar to that in control mice. In contrast, interleukin-10 expression was augmented in the TNF-␣-neutralized mice. In summary, results of this study suggest that TNF-␣ plays an essential role in preventing reactivation of persistent tuberculosis, modulates the pulmonic expression of specific immunologic factors, and limits the pathological response of the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.