Reactivation of latent tuberculosis contributes significantly to the incidence of disease caused by Mycobacterium tuberculosis. The mechanisms involved in the containment of latent tuberculosis are poorly understood. Using the low-dose model of persistent murine tuberculosis in conjunction with MP6-XT22, a monoclonal antibody that functionally neutralizes tumor necrosis factor alpha (TNF-␣), we examined the effects of TNF-␣ on the immunological response of the host in both persistent and reactivated tuberculous infections. The results confirm an essential role for TNF-␣ in the containment of persistent tuberculosis. TNF-␣ neutralization resulted in fatal reactivation of persistent tuberculosis characterized by a moderately increased tissue bacillary burden and severe pulmonic histopathological deterioration that was associated with changes indicative of squamous metaplasia and fluid accumulation in the alveolar space. Analysis of pulmonic gene and protein expression of mice in the low-dose model revealed that nitric oxide synthase was attenuated during MP6-XT22-induced reactivation, but was not totally suppressed. Interleukin-12p40 and gamma interferon gene expression in TNF-␣-neutralized mice was similar to that in control mice. In contrast, interleukin-10 expression was augmented in the TNF-␣-neutralized mice. In summary, results of this study suggest that TNF-␣ plays an essential role in preventing reactivation of persistent tuberculosis, modulates the pulmonic expression of specific immunologic factors, and limits the pathological response of the host.
Members of the Mycobacterium tuberculosis group synthesize a family of long‐chain fatty acids, mycolic acids, which are located in the cell envelope. These include the non‐oxygenated α‐mycolic acid and the oxygenated keto‐ and methoxymycolic acids. The function in bacterial virulence, if any, of these various types of mycolic acids is unknown. We have constructed a mutant strain of M. tuberculosis with an inactivated hma (cmaA, mma4) gene; this mutant strain no longer synthesizes oxygenated mycolic acids, has profound alterations in its envelope permeability and is attenuated in mice.
Tuberculosis is a major cause of death in much of the world. Current estimates are that one-third of the world's population is infected with Mycobacterium tuberculosis. Most infected persons control the infection but in many cases may not eliminate the organism. Reactivation of this clinically latent infection is responsible for a large proportion of active tuberculosis cases. A major risk factor for reactivation of latent tuberculosis is HIV infection, suggesting a role for the CD4+ T cell subset in maintaining the latent persistent infection. In this study, we tested the requirement for CD4+ T cells in preventing reactivation in a murine model of latent tuberculosis. Antibody-mediated depletion of CD4+ T cells resulted in rapid reactivation of a persistent infection, with dramatically increased bacterial numbers in the organs, increased pathology in the lungs, and decreased survival. Although CD4+ T cells are believed to be a major source of interferon (IFN)-γ, expression of the gene for IFN-γ in the lungs of CD4+ T cell–depleted mice was similar to that in control mice. In addition, inducible nitric oxide synthase production and activity was unimpaired after CD4+ T cell depletion, indicating that macrophage activation was present even during CD4+ T cell deficiency. These data indicate that CD4+ T cells are necessary to prevent reactivation but may have roles in addition to IFN-γ production and macrophage activation in controlling a persistent tuberculous infection.
Infectious diseases and malnutrition represent major burdens aff licting millions of people in developing countries. Both conditions affect individuals in industrialized nations, particularly the aged, the HIV-infected, and people with chronic diseases. While malnutrition is known to induce a state of immunodeficiency, the mechanisms responsible for compromised antimicrobial resistance in malnourished hosts remain obscure. In the present study, mice fed a 2% protein diet and developing protein calorie malnutrition, in contrast to well-nourished controls receiving a 20% protein diet, rapidly succumbed to infection with Mycobacterium tuberculosis. Malnourished mice exhibited a tissue-specific diminution in the expression of interferon ␥, tumor necrosis factor ␣, and the inducible form of nitric oxide synthase in the lungs, but not the liver. The expression of these molecules critical to the production of mycobactericidal nitrogen oxides was depressed in malnourished animals in the lungs specifically at early times (<14 days) after infection. At later times, levels of expression became comparable to those in well-nourished controls, although the bacillary burden in the malnourished animals continued to rise. Nevertheless, urinary and serum nitrate contents, an index of total nitric oxide (NO) production in vivo, were not detectably diminished in malnourished, mycobacteria-infected mice. In contrast to the selective and early reduction of lymphokines and the inducible form of nitric oxide synthase in the lung, a marked diminution of the granulomatous reaction was observed in malnourished mice throughout the entire course of infection in all tissues examined (lungs, liver, and spleen). Remarkably, the progressively fatal course of tuberculosis observed in the malnourished mice could be reversed by restoring a full protein (20%) diet. The results indicate that protein calorie malnutrition selectively compromises several components of the cellular immune response that are important for containing and restricting tuberculous infection, and suggest that malnutritioninduced susceptibility to some infectious diseases can be reversed or ameliorated by nutritional intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.