Peptic ulcer is among the most serious gastrointestinal diseases in the world. Several orthodox drugs are employed for the treatment of the disease. Although these drugs are effective, they produce many adverse effects thus limiting their use. In recent years, there has been a growing interest in alternative therapies, especially those from plants due to their perceived relative lower side effects, ease of accessibility, and affordability. Plant medicines with ethnomedicinal use in peptic ulcer management need to be screened for their effectiveness and possible isolation of lead compounds. This requires use of appropriate animal models of various ulcers. The limited number of antiulcer models for drug development against gastric and duodenal ulcer studies has hindered the progress of targeted therapy in this field. It is, therefore, necessary to review the literature on experimental models used to screen agents with potential antigastroduodenal ulcer activity and explain their biochemical basis in order to facilitate their use in the development of new preventive and curative antiulcer drugs. Clinical trials can then be carried out on agents/drugs that show promise. In this paper, currentin vivoanimal models of ulcers and the pathophysiological mechanisms underlying their induction, their limitations, as well as the challenges associated with their use have been discussed.
The aqueous root extract of Cryptolepis sanguinolenta (CSE) is a popular antimalarial in West African ethnomedicine. Cryptolepine (CLP), the major alkaloid of the plant, is a cytotoxic DNA intercalator that has promise as an anticancer agent. To date the aqueous root extract, the traditional antimalarial formulation, has not been evaluated for toxicity. In this study, we have examined the in vitro toxicity of CSE and CLP using V79 cells, a Chinese hamster lung fibroblast frequently used to assess genetic toxicity, and a number of organ-specific human cancer cell lines. CSE and CLP caused a dose- and time-dependent reduction in viability of the V79 cell line. Flow cytometric analysis of CSE- and CLP-treated (24 h) asynchronously growing V79 cells using propidium iodide (PI) staining revealed an accumulation of cells (up to 55%) in the sub-G1 phase of the cell cycle, indicative of cell death. The V79 cells and almost all the organ-specific human cancer cell lines exposed to CSE and CLP were profoundly growth inhibited, as measured in a clonogenicity assay. In a V79 cell mutation assay (hprt gene), CSE (5-50 microg/ml) only induced mutation at the highest dose employed (mutation frequency approximately 4 and 38 mutant clones per 10(6) cells for control and CSE, respectively), but CLP (0.5-5.0 microM) was not mutagenic. These results indicate that CSE and CLP are very cytotoxic and may be weak mammalian mutagens and/or clastogens. The poor genotoxicity of CSE and CLP coupled with their potent cytotoxic action support their anticancer potential.
BackgroundBabies are increasingly being exposed to antibiotics intrapartum in the bid to reduce neonatal and maternal deaths. Intrapartum antibiotic exposure, including even those considered safe in pregnancy, have been associated with childhood obesity and compromised immunity. Data on the extent of antibiotic use, safety and its impact on birth outcomes and neonatal health in Sub-Saharan Africa is very limited. This study sought to ascertain the extent of antibiotic use in pregnancy and its effects on birth outcomes in a rural hospital in Ghana.MethodsThe study was a retrospective randomized study of mothers who delivered babies in a rural hospital between 2011 and 2015 in Ghana. A total of 412 mother/baby records out of 2100 pre-selected met the inclusion criteria of the study. Indicators of neonatal health used were birthweight, Apgar score, incidence of birth defects.ResultsSixty five percent of pregnant women were administered antibiotics at some stage during pregnancy. Beta Lactam antibiotics accounted for more than 67% of all antibiotics prescribed. There was a statistically significant association between antibiotic exposure and pregnancy factors such as stage of pregnancy, parity and mode of delivery but not with socio-economic status of the mother. Intrapartum antibiotic exposure did not significantly affect the birthweight, incidence of congenital birth defect and mean Apgar scores. After adjusting for method of delivery, however, perinatal antibiotic use (24 h to delivery) was associated with lower mean Apgar scores. Birth weight was affected significantly by maternal socio-economic factors such as age and marital status.ConclusionSixty five percent of women attending the antenatal clinic received antibiotics. Intrapartum antibiotics did not affect early markers of neonatal health such as birthweight, congenital birth defect and mean Apgar scores. However, antibiotic use less than 24 h to delivery was associated with a decrease in mean APGAR score.
BackgroundCryptolepine (CPE) is the major indoloquinoline isolated from the popular West African anti-malarial plant, Cryptolepis sanguinolenta. CPE possesses various pharmacological activities with potent anti-malarial activity against both chloroquine (CQ)-resistant and -sensitive strains. The search for safe and novel anti-malarial agents and combinations to delay resistance development to Plasmodium falciparum directed this work aimed at evaluating the anti-malarial interaction and safety of CPE in combination with some artemisinin derivatives.MethodsThe in vitro SYBR Green I, fluorescent-based, drug sensitivity assay using a fixed ratio method was carried out on the CQ-sensitive plasmodial strain 3D7 to develop isobolograms from three CPE-based combinations with some artemisinin derivatives. CPE and artesunate (ART) combinations were also evaluated using the Rane’s test in ICR mice infected with Plasmodium berghei NK-65 strains in a fixed ratio combination (1:1) and fractions of their ED50s in order to determine the experimental ED50 (Zexp) of the co-administered compounds. Isobolograms were constructed to compare the Zexp to the Zadd.ResultsCPE exhibited promising synergistic interactions in vitro with ART, artemether and dihydroartemisinin. In vivo, CPE combination with ART again showed synergy as the Zexp was 1.02 ± 0.02, which was significantly less than the Zadd of 8.3 ± 0.31. The haematological, biochemical, organ/body weight ratio and histopathology indices in the rats treated with CPE at all doses (25, 50, 100 mg kg−1po) and in combination with ART (4 mg kg−1) showed no significant difference compared to the control group.ConclusionThe combination of CPE with the artemisinin derivatives were safe in the rodent model and showed a synergistic anti-malarial activity in vivo and in vitro. This study supports the basis for the selection of CPE as a prospective lead compound as the search for new anti-malarial combinations continues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.