Fortified dairy products appeal to a wide variety of consumers and have the potential to increase sales in the yogurt industry and help increase intake of long-chain n-3 fatty acids. The objectives of this study were to develop a strawberry yogurt containing microencapsulated salmon oil (MSO; 2% wt/vol) and evaluate its characteristics during 1 mo of storage. Unpurified salmon oil (USO) was purified (PSO) and both USO and PSO were analyzed for peroxide value (PV), anisidine value (AV), total oxidation, free fatty acids (FFA), and moisture content. A stable emulsion was prepared with 7% PSO, 22% gum arabic, 11% maltodextrin, and 60% water. The emulsion was spray-dried to produce MSO. The MSO was added to strawberry-flavored yogurt (SYMSO) before pasteurization and homogenization, and a control (SY) without MSO was produced. Both yogurts were stored for 1 mo at 4°C and we determined the quality characteristics including acidity (pH), syneresis, thiobarbituric acid (TBA), fatty acid methyl ester composition, color, and lactic acid bacteria (LAB) count. The entire experiment was replicated 3 times. Total oxidation (unitless) of USO, PSO, and MSO was calculated to be 20.7±1.26, 10.9±0.1, and 13.4±0.25, respectively. Free fatty acid contents were 1.61±0.19%, 0.59±0.02%, and 0.77±0.02% for USO, PSO, and MSO, respectively. Eicosapentaenoic acid and docosahexaenoic acid were the predominant polyunsaturated fatty acids in MSO and in SYMSO, but neither was detected in SY. Fortification of SY with MSO had no significant effect on yogurt pH or syneresis. A decrease in concentration of lactic acid bacteria was observed during the storage of all yogurts. Thiobarbituric acid values significantly increased as storage time increased and SY had a significantly lighter (higher L*) and less yellow (lower b*) color than SYMSO. Although some slight differences were observed in the color and oxidation of SYMSO compared with SY, the study demonstrated that SY could be fortified with salmon oil.
This study was designed to determine whether kefir accentuates the positive health benefits assessed by measures in fitness, body composition, or both, as a measure of cardiovascular disease risk as well as the biomarker C-reactive protein (CRP). Sixty-seven adult males and females aged 18 to 24 yr were assigned to 1 of 4 groups: (1) endurance training + control beverage, (2) endurance training +kefir beverage,(3) active control + control beverage, or (4) active control + kefir beverage. The exercise groups completed 15 wk of structured endurancetraining while the active control groups maintained their usual exercise routine. Additionally, each group was assigned to either a kefir or a calorie/macronutrient matched placebo beverage that was consumed twice per week. No significant interactions were found among groups with respect to outcome variables with the exception of serum CRP. The endurance training was effective in improving 1.5-mile (2.41 km) times and kefir supplementation may have been a factor in attenuating the increase in CRP that was observed over the course of the intervention period. This preliminary study suggests that kefir may be involved in improving the risk profile for cardiovascular disease as defined by CRP.
Successful introduction of insect consumption to a reluctant US population requires novel insect-based foods that are responsive to consumers' expectations of sensory quality. Based on our 'product appropriateness' data, snack crackers were formulated with increasing levels of cricket powder (0%, 5%, 10%, 15%, and 20%) in substitution of whole-wheat flour. Colour, texture, flavour and overall perceptions of snack crackers were evaluated by 150 US consumers in terms of preference (2-alternative choice), degree of liking (9-point scale) and acceptability (yes/no). Flavour liking was most highly correlated with overall liking (r = 0.93). Instrumental analyses indicated that increasing cricket powder resulted in darker and harder crackers, negatively impacting colour and texture preference at 5% and 15% cricket powder addition, respectively. Snack crackers remained acceptable at 15% wheat flour substitution (80% acceptability; mean overall liking = 5.5). However, to promote future consumption, an upper limit of 7.9% cricket powder addition is recommended until sensory quality can be improved.
Kefir is a fermented milk traditionally made from a unique starter culture, which consists of numerous bacteria and yeast species bound together in an exopolysaccharide matrix produced by certain lactic acid bacteria. Many health benefits are associated with traditionally produced kefir; however, bulging and leaking packaging, caused by secondary yeast fermentation during storage, has limited large-scale manufacture. Commercial kefir products have been designed to reduce these effects by using a pure starter culture consisting of a mixture of bacteria and yeast species that give a flavor similar to traditional kefir, but some health benefits may be lost in commercial production due to reduced microbial diversity and lack of beneficial exopolysaccharides. In this study, traditional and commercial kefir was frozen to study the effects of frozen storage on the viability of probiotic bacteria over time. Traditional kefir was prepared by inoculating 1L of pasteurized whole goat milk with approximately 30g of kefir grains. Commercial kefir was prepared by inoculating 1L of full-fat, pasteurized goat milk with a commercial kefir starter. The milk was allowed to ferment at room temperature (24-28°C) until pH 4.6 was reached. Samples were frozen (-8 to -14°C) immediately following the completion of fermentation and were thawed and plated for lactobacilli, lactococci, and yeasts on d 0, 7, 14, and 30 of frozen storage. Lactobacilli, lactococci, and yeasts were significantly reduced in number during frozen storage; however, the traditionally produced kefir was shown to have significantly higher counts of bacteria and yeast at each sampling. We concluded that frozen storage and the development of frozen kefir products could eliminate most packaging concerns associated with the large-scale manufacture of traditionally produced kefir, resulting in increased production and marketability of this healthful product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.